
CS4405 – Analysis of Concurrent and Distributed Programs

Introduction to Distributed Systems

Burcu Kulahcioglu Ozkan



Shared-memory vs distributed systems

Distributed

Burcu Kulahcioglu Ozkan, CS4405

Shared-memory

What concurrency problems do you think are common or different in these systems?

Image credit: Wikipedia



What is a distributed system?

§ “. . . a system in which the failure of a computer you didn’t 
even know existed can render your own computer unusable.” 

— Leslie Lamport

Burcu Kulahcioglu Ozkan, CS4405

§ The computers in the system: 
§ Are connected over network
§ Communicate by exchanging 

messages



Why distributed systems?

Inherent Distribution:

§ Information dissemination 
(publishers/subscribers)

§ Distributed process control
§ Cooperative work (different nodes on 

a network read/write)
§ Distributed storage

Distribution as an Artifact:

§ Performance
§ Scalability (data, geographical, functional)

§ Moore’s law: The number of transistors on a 
single chip doubles about every two year.

§ The advancement has slowed since around 2010.
§ Distribution provides massive performance.

§ Availability
§ Fault tolerance

Introduction to reliable and secure distributed programming. Cachin, Christian, Rachid Guerraoui. Springer, 2011



A simple distributed system example

Burcu Kulahcioglu Ozkan, CS4405

write comment write comment

comment added comment added



Fallacies of distributed systems

By Peter Deutsch
§ The network is reliable
§ Latency is zero
§ Bandwidth is infinite
§ The network is secure
§ Topology does not change
§ Transport cost is zero
§ The network is homogeneous

Burcu Kulahcioglu Ozkan, CS4405

https://en.wikipedia.org/wiki/L._Peter_Deutsch
https://aphyr.com/posts/288-the-network-is-reliable


Distributed system abstractions

§ Abstracting the underlying physical system into a system model:
§ Processes and messages
§ Communication links

§ We start with a primitive link abstraction (e.g. from point A to point B), and layer 
on abstractions to build stronger guarantees.

§ Abstractions for common interaction patterns (incremental):
§ Process identities (processes agree on who they are)
§ Consensus (processes agree on a common plan)
§ Atomic commitment (processes take a step only if all processes agree)
§ Total order broadcast (processes agree on a total order of actions)

Introduction to reliable and secure distributed programming. Cachin, Christian, Rachid Guerraoui. Springer, 2011



Processes and messages

§ Processes: “units that are able to perform computations in a distributed system”
§ A distributed system consists of a collection of automata, one per process
§ The execution of a distributed algorithm is represented by a sequence of steps 

executed by the processes:
§ Receiving a message
§ Executing a local computation
§ Sending a message to a process

Burcu Kulahcioglu Ozkan, CS4405

Network



Abstracting Processes: Process failures

§ Crash fault
§ Omission fault
§ Crash-recovery fault
§ Arbitrary/Byzantine fault

Burcu Kulahcioglu Ozkan, CS4405



Cryptographic abstractions

§ Hash functions: 
§ Maps a bit string of arbitrary length to a short, unique representation

§ Message-Authentication Codes (MACs)
§ authenticates data between two entities using a symmetric key

§ Digital signatures
§ provides data authentication in systems with multiple entities that need not 

share any information beforehand

Burcu Kulahcioglu Ozkan, CS4405



Abstracting communication

§ Network topology:
§ fully connected mesh, broadcast medium, ring, mesh of links

§ Communication links:
§ Fair-loss links: 

• Messages might be lost but the probability for a message not to be lost is nonzero
§ Stubborn links: 

• A message is eventually delivered, but a message can be delivered an unbounded number of times
§ Perfect links:

• Eliminate duplicates: Reliable delivery with no duplication
§ Logged perfect links

• Reliable delivery with no duplication for crash-recovery processes
§ Authenticated links

• Uses a MAC to implement authenticated perfect point-to-point links

Burcu Kulahcioglu Ozkan, CS4405



System synchrony model: Synchronous

Burcu Kulahcioglu Ozkan, CS4405

§ Process execution speeds or message delivery times are bounded. 
In a synchronous system, we can have:
§ Timed failure detection
§ Time based coordination
§ Worst-case performance

!"

!#

Propose

!$

!%

!&

proposal 1? “OK”

Response



System synchrony model: Asynchronous

§ No assumptions about process execution or message delivery times are made
§ Upon waiting for a response to a requests, it is not possible to distinguish whether:

§ the request was lost
§ the remote node is down
§ the response was lost

Burcu Kulahcioglu Ozkan, CS4405

!"

!#

Propose

!$

!%

!&

proposal 1? “OK”

Response



System synchrony model: Partially-synchronous

The retransmission of the messages may help ensure the reliability of the 
communication links but introduce unpredictable delays. 
Set timeouts and retry the request until it succeeds 
In this sense, practical systems are partially synchronous:
§ Partially-synchronous system: There exist upper bounds on the network delay but 

the programmer does not know them.

Burcu Kulahcioglu Ozkan, CS4405


