Many Flavors of Concurrency:
Asynchronous and Event-Driven
°rogramming

CS4405 — Analysis of Concurrent and Distributed Programs

Burcu Kulahcioglu Ozkan

]
TUDelft

Many flavours of concurrency

= Concurrent programming
= Multiple tasks can be in progress at any instant

= Parallel programming
= Utilizing more than one processors for running the program

= Asynchronous programming
" Programming with non-blocking requests/method calls

= Event-driven programming
= The flow of the execution is determined by the (possibly concurrent) events

= Distributed programming
= Multiple computers run as a single system

Many authors consider shared-memory programs to be “parallel” and
distributed-memory programs to be “distributed”

Burcu Kulahcioglu Ozkan, CS4405

Single-threaded asynchronous programming

Burcu Kulahcioglu Ozkan, CS4405

Asynchronous programming

What does the following JS code print to the console?

function myfunc() {
console.log(' Here ')

}

setTimeout (myfunc, 2)

console.log(' I am ')

Asynchronous programming refers to a style of structuring a program whereby a call to some unit of
functionality triggers an action that is allowed to continue outside of the ongoing flow of the program.

[https://nodesource.com/blog/why-asynchronous/]

Asynchronous programming allows us to execute a block of code without blocking the caller thread

Burcu Kulahcioglu Ozkan, CS4405

https://nodesource.com/blog/why-asynchronous

Synchronous vs asynchronous

Burcu Kulahcioglu Ozkan, CS4405

Asynchrony using callbacks

= Callback is any reference to executable code that is passed as an argument to
other code; that other code is expected to call back (execute) the code at a given
time. This execution may be immediate as in a synchronous callback, or it might
happen at a later point in time as in an asynchronous callback

9 S W
el
LENe) g

& D L
S

NS

= Do not block, call it back when needed.

= Programming languages support callbacks in different ways, e.g., lambda
expressions, blocks, function pointers.

Burcu Kulahcioglu Ozkan, CS4405

Timeout callbacks:

Sets a timer and executes the callback function after the timer expires

o7

O
PN

What does the JS code above print?

Burcu Kulahcioglu Ozkan, CS4405

User event callbacks:

Calls the callback function whenever the event occurs

Burcu Kulahcioglu Ozkan, CS4405

Network event callbacks

Burcu Kulahcioglu Ozkan, CS4405

(QE Example with multiple callbacks: What does it print?

const regl = new XMLHttpRequest(), methodl = "GET",
urll = "https://cs4405.github.io/slides/lecture-3.pdf";
reql.open(methodl, urll, true);

reql.onreadystatechange = function () {

if(reql.readyState === XMLHttpRequest.DONE) {
if (reqgl.status === || (reql.status >= 200 && reql.status < 400)) {
console.log(' Call 1 resolved')
}
i
const reg2 = new XMLHttpRequest(), method2 = "GET",

url2 = "http://cs4405.github.io/";
req2.open(method2, url2, true);

req2.onreadystatechange = function () {

if(req2.readysState === XMLHttpRequest.DONE) {
if (req2.status === 0 || (req2.status >= 200 && req2.status < 400)) {
console.log(' Call 2 resolved')
}

P}

reql.send();
reqg2.send();

Burcu Kulahcioglu Ozkan, CS4405

Single threaded event loop:

e,umé'/ m essxy,g

looPef'

)

(OnConneaed | [Laguel| [ondel| — B

event/message queue

Burcu Kulahcioglu Ozkan, CS4405

Nested callbacks, aka, “callback hell”

Burcu Kulahcioglu Ozkan, CS4405

Structured asynchrony: Promises (ES2015)

= A promise is commonly defined as a proxy for a value that will eventually nede
become available ©
= Once a promise has been called, it will start in pending state.
= The caller is not blocked: it continues its execution
= Promise can be resolved in: resolved state or rejected state

const checkIfItsDone = () => {
p.then(ok => { console.log(ok) })

.catch(err => { console.error(err) })

}

const fetchPromise = fetch("https://. . .");
fetchPromise.then(response => {

console.log(response);

})i

Burcu Kulahcioglu Ozkan, CS4405

Structured asynchrony: Chaining promises

= A promise can be returned to another promise, creating a chain of promises. ng@de

firstFunction(args, function() { const chainAll = () => {

first.then(ok => { second (..) })

secondFunction(args, function() { then(ok => { third (..) })

thirdFunction(args, function() { .catch(err => { console.error(err) })

// And so on..

)
)
}):

callbacks promises

Implemented in JavaScript, Node. js, Scala, Java, C++, etc 4

Burcu Kulahcioglu Ozkan, CS4405

Another example for chaining promises

Example from: https://flaviocopes.com/javascript-callbacks/

Structured asynchrony: Async/await (ES2017)

= A higher level abstraction built on promises

Implemented in C# 5.0, C++, Python 3.5, F#, Kotlin 1.1, Rust 1.39, JavaScript ES2017, Scala (beta), etc
Burcu Kulahcioglu Ozkan, CS4405

Structured asynchrony: Async/await

= Simpler to read code, similar to synchronous calls

const getFirstUserData = () => { const getFirstUserData = async () => {
return fetch('/users.json') const response = await fetch('/users.json')

.then(response => response.json()) const users = await response.json()
.then(users => users[0]) user = users[0]
.then(user => fetch(/users/${user.name}”)) const userResponse = await fetch(/users/${user.name}”)
.then(userResponse => userResponse.json()) const userData = await userResponse.json()

} }

getFirstUserData() getFirstUserData()

promises async/await

Example from: https://flaviocopes.com/javascript-async-await/ ‘ a

Why use asynchrony?

= |[ncrease responsiveness: Less blocking

= |[ncrease scalability: Programs can serve for multiple requests concurrently

1 reference
bublic async Task MakeCakeAsync()
0 references {
public void MakeCake() Task<bool> preheatTask = PreheatOvenAsync(); // start/store this task (no blocking needed!) and come back to it later
{ AddCakeIngredients(); // make cake batter while waiting for the oven to preheat
PreheatOven()‘ bool isPreheated = await preheatTask; // get the result of preheat method in order to bake the cake
2
AddCakeIngredients(); Task<bool> bakeCakeTask = BakeCakeAsync(isPreheated); // start baking the cake and do other things while baking
BakeCake(); AddFrostingIngredients(); // make the frosting while the cake is baking
AddFrostingIngredients(); Task<bool> coolFrostingTask = CoolFrostingAsync(); // start cooling the frosting and come back to it when needed
CoolFrosting(); PassTheTime(); // do other things while cake is baking and frosting is cooling
CoolCake(); bool isBaked = await bakeCakeTask; // get the result of BakeCakeAsync() in order to cool the cake
2
FrostCake(); Task<bool> coolCakeTask = CoolCakeAsync(isBaked); // start cooling the cake after it's done baking
Console.WriteLine("Cake is served! Bon Appetit!"); bool cakeIsCooled = await coolCakeTask; // get the result of CoolCakeAsync() when finished
} bool frostingIsCooled = await coolFrostingTask; // get the result of CoolFrostingAsync() when finished
FrostCake(cakeIsCooled, frostingIsCooled); // frost the cake once the cake and frosting are cooled

Console.WriteLine("Cake is served! Bon Appetit!"); // Enjoy!

Example from: https://devblogs.microsoft.com/visualstudio/how-do-i-think-about-async-code/

(QE Asynchronous programming pros and cons:

v'No low-level race conditions

v'Control over task switching

x Difficult to implement correctly: Complex control flow

X Need to be careful with the load for better performance

Example from: https://devblogs.microsoft.com/visualstudio/how-do-i-think-about-async-code/ 4

Concurrency errors due to asynchrony: Data races

Caused by the nondeterminism in the event dispatch, network responses, CPU speed, etc.

The traditional definition of a data race (for multithreaded programs) does not apply directly

[Petrov. et. al, 2012] identifies several types of data races in web applications and proposes
WEBRACER dynamic race detector for web applications

= Based on a definition of a happens-before relation for JS and HTML features

Let A, A" € {read,write}x0Opld be memory accesses to some logical location (JavaScript variable
or an HTML elements in the DOM) m in an execution. A race exists between 4 and 4’ if:

* op(A) # op(4")
= 4 and A’ are not related with happens-before relation
= one of the accesses A and 4’ is a write

[Petrov. et. al, 2012] Race detection for web applications
B. Petrov, M. T. Vechev, M. Sridharan, J. Dolby. PLDI 2012

Data races in JS programs

= Data race on a variable

Browser Server
x=1
; : <input type="text" id="depart" />
<script>x = 1;</script> P ype /

<iframe src="a.html" /> e "ahtml"/> request a.html St i : s
APramg Ere—"h Kl /> iframe src="a.htm <script type="text/javascript">

// add a hint to the box
<!-—— a.html --> : g request b.html document .getElementById("depart").value =
<ifra =“b.html"/> wes
<script>x = 2;</script> PR mEs City of Departure";
__bhtm // code to remove hint when user clicks
<!-- b.html --> S T
<script>alert(x);</script> b.html: alert(x) </script>
ahtml
v «— \

a.html:x=2;

Burcu Kulahcioglu Ozkan, CS4405

Data races in JS programs

= Data race on an HTML element (the access of an element may occur before its creation)

<script type="text/javascript">

function show(emailTo,EmailC) { Browser User
EmailC .va%ue = emailTo;
v = $get('dw’); render link
v.style.display = "block";
}
</script>
clicklink
DR ..
invoke show()
<a href= |
"javascript:show(’x@x.com’, a)"> v
Send Email access dw (JavaScript crash !)

v
<div id=dw style="display:none"> <div id="dw" ...>

// HIML form to send email
</div>

= More: Data races on functions, event dispatches

Burcu Kulahcioglu Ozkan, CS4405 4

Concurrency errors due to asynchrony: Atomicity violation

-_— N
g T S S - User A, A, o | Wy ,’
User A vi| D s e e B S 7
o ————e T -
—————— " Browser R, e | 7 R
e [B i 1R S A N 7)(_’ \
Server X
Server X% ver 1
(b) What you operate on is not what you see

(a) Synchronous request

Atomicity between what the user triggers and what he sees If P1 updates some data that is used by R2, R2 is operates on

the new data instead of what the user sees

s5s <7y 27y
User A, A, Pl " User A, A, // V, /‘ A; /7 |Vh /l
/
— e \T\"—'{ /_/ S 7..._././_.. A
Browser R, R, (P|”7 Browser Ry R (P2, R .’L 23% {
Server X, Server Xy X5 X;

(d) User confusion
When the user performs A3 according to what he sees, he might
get confused and think that he is operating on the result of Al .

(c) Atomicity violation
Assume an object is tested to be not null in R1. An interleaving
R2 may et the object to null and lead to an exception in P1

Statically locating web application bugs caused by asynchronous calls. Zheng, Y., Bao, T., & Zhang, X. WWW’11

Some concurrency analysis works for single-threaded asynchrony (tbc)

 Statically locating web application bugs caused by asynchronous calls. Y. Zheng, T., X. Zhang. WWW 2011
e Race detection for web applications B. Petrov, M. T. Vechev, M. Sridharan, J. Dolby. PLDI 2012

. Izgnow It When | See It: Observable Races in JavaScript Applications E. Mutlu, S. Tasiran, B. Livshits. Dyla@PLDI
14

* A comprehensive study on real world concurrency bugs in Node.js. J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K.
Yin, J. Wei. ASE 2017

» Deferrability Analysis for JavaScript J. Kloos, R. Majumdar, F. McCabe. Haifa Verification Conference 2017

e Detecting atomicity violations for event-driven Node.js applications. X. Chang, W. Dou, Y. Gao, J. Wang, J.
Wei, T. Huang. ICSE 2019

* Enabling Additional Parallelism in Asynchronous JavaScript Applications. E. Arteca, F. Tip, M. Schafer. ECOOP
2021

e Race Detection for Event-Driven Node.js Applications. X. Chang, W. Dou, J. Wei, T. Huang, J. Xie, Y. Deng, J.
Yang, J. Yang. ASE 2021.

and more ...

Burcu Kulahcioglu Ozkan, CS4405

Multi-threaded asynchronous programming

Burcu Kulahcioglu Ozkan, CS4405

Multithreaded asynchronous programming

= Asynchronous method calls + multithreading

= Asynchronous calls run in parallel to the main thread

1 reference

lpublic async Task MakeCakeAsync()

{

Task<bool> preheatTask = PreheatOvenAsync(); // start/store this task (no blocking needed!) and come back to it later
AddCakeIngredients(); // make cake batter while waiting for the oven to preheat
bool isPreheated = await preheatTask; // get the result of preheat method in order to bake the cake

Task<bool> bakeCakeTask = BakeCakeAsync(isPreheated); //

AddFrostingIngredients(); //
Task<bool> coolFrostingTask = CoolFrostingAsync(); //
PassTheTime(); 11

bool isBaked = await bakeCakeTask; //

Task<bool> coolCakeTask = CoolCakeAsync(isBaked); //
bool cakeIsCooled = await coolCakeTask; 11
bool frostingIsCooled = await coolFrostingTask; //
FrostCake(cakeIsCooled, frostingIsCooled); 474
Console.WriteLine("Cake is served! Bon Appetit!"); 1

start baking the cake and do other things while baking

make the frosting while the cake is baking

start cooling the frosting and come back to it when needed
do other things while cake is baking and frosting is cooling
get the result of BakeCakeAsync() in order to cool the cake

start cooling the cake after it's done baking

get the result of CoolCakeAsync() when finished
get the result of CoolFrostingAsync() when finished

frost the cake once the cake and frosting are cooled

Enjoy!

C# Async/Await: Asynchronous and multithreaded

Burcu Kulahcioglu Ozkan, CS4405

(QOE‘ What does the following JS code print on the console?

setTimeout(() => {
console.log('Here I am');

Yoo 2)

let 1 = 1;

while (i < 1000) {
console.log(1i);
SIS

}

Single-threaded asynchrony: Asynchronous task does not interleave with the caller task

Burcu Kulahcioglu Ozkan, CS4405

(QI‘OZ‘ What does the following C# code print on the console?

Multi-threaded asynchrony: Asynchronous task can interleave with the caller task

Burcu Kulahcioglu Ozkan, CS4405 ‘ i‘

Multithreaded asynchronous programming

= Inherits the challenges of multithreaded concurrency
= + more complex execution flow

Prone to:
maln /UL SO PR oedgound
Prread Prrged el
M : = Data races
o..-{ onlowd | M onlicl | — - ' .
| = Order violation
K = Atomicity violation
I = Deadlocks

Burcu Kulahcioglu Ozkan, CS4405

Event-driven programming

Burcu Kulahcioglu Ozkan, CS4405

Event-driven programming

The program is written as a set of event handlers

It listens for events The flow of execution is determined by the invocation of the events

Generally, a main loop that listens for events (e.g., user interactions, notifications) and then triggers
the callback function of the invoked events

Ex: Javascript web applications, mobile applications

v,\IMA‘/m zsx%
looper

O

-
OnConnecled onClicl | —_—

event/message queue

Burcu Kulahcioglu Ozkan, CS4405

Event-driven programming: Main thread + background threads

= Do not block the Ul thread, asynchronously call IO operations, delegate long-
running tasks to the background threads

&
evars/ m ess_% matn /UL T Q loedgo
- abceed e
looP@(' Prread Hanged Head 2

e _
oV onloed | éiﬂlel onClicl | —> S

or\J_.ooAl M O(\C\\LL\

Example isn't responding.

Do you want to close it?

WAIT OK

Burcu Kulahcioglu Ozkan, CS4405 4

Event-driven programming: Multiple looper threads

matn /UL ’/(askAHo«:uLf
Mresd Prrgad
e & | onClcl | —> =S @ —_—

Burcu Kulahcioglu Ozkan, CS4405

Event-driven programming: Asynchronous task posting to Ul thread

W\G‘N/UI & e o = Main/U! thread Background
Prread Preged Yhead 2 I thread
. PreE t
ERIES Qn]_oqA l l %x\l O(\C\\C-'L_\ _— _ onPreExecute()
onProgressUpdate(Progress..) [« publishProgress(Progress..) doInBackground(Params..)
2

onPostExecute(Result)

e.g. AsyncTask callbacks, or
onrunOnUIThread method in Android API

Burcu Kulahcioglu Ozkan, CS4405 Image credit: https://androidkennel.org/ 4

Some concurrency analysis works for multi-threaded asynchrony (tbc)

* Race detection for Android applications. P. Maiya, A. Kanade, R. Majumdar. PLDI 2014

* Race detection for event-driven mobile applications. Hsiao, C. Pereira, J. Yu, G. Pokam, S. Narayanasamy, P. M. Chen, Z. Kong, J. Flinn.
PLDI 2014:

* Retrofitting concurrency for Android applications through refactoring. Y. Lin, C. Radoi, D. Dig. SIGSOFT FSE 2014

* Systematic Asynchrony Bug Exploration for Android Apps. B. Kulahcioglu Ozkan, M. Emmi, S. Tasiran. CAV 2015:

* Systematic testing of asynchronous reactive systems. Ankush Desai, Shaz Qadeer, Sanjit A. Seshia. ESEC/SIGSOFT FSE 2015
* Effectively Manifesting Concurrency Bugs in Android Apps. Q. Li, Y. Jiang, T. Gu, C. Xu, J. Ma, X. Ma, J. Lu. APSEC 2016:

* Verifying Robustness of Event-Driven Asynchronous Programs Against Concurrency. A. Bouajjani, M. Emmi, C. Enea, B. Kulahcioglu
Ozkan, S. Tasiran. ESOP 2017:

* Static deadlock detection for asynchronous C# programs. A. Santhiar, A. Kanade. PLDI 2017:
* Static detection of event-based races in Android apps. Y. Hu, |. Neamtiu. ASPLOS 2018:

and more ...

Burcu Kulahcioglu Ozkan, CS4405

Revisit: Many flavours of concurrency

= Concurrent programming
= Multiple tasks can be in progress at any instant

= Parallel programming
= Utilizing more than one processors for running the program

= Asynchronous programming
" Programming with non-blocking requests/method calls

= Event-driven programming
= The flow of the execution is determined by the (possibly concurrent) events

= Distributed programming
= Multiple computers run as a single system

Many authors consider shared-memory programs to be “parallel” and
distributed-memory programs to be “distributed”

Burcu Kulahcioglu Ozkan, CS4405

0,

4 : @. |
: B

SR, : . ‘
['et'sire-write’our code:touse multit
—~ = =S T

https://www.reddit.com/r/ProgrammerHumor/comments/st360l/multi_mess/

Takeaways

Know your execution model

Know your programming model
= The semantics of concurrency constructs

Do not reinvent the wheel if not necessary

Beware of asynchrony and concurrency ©

Burcu Kulahcioglu Ozkan, CS4405 4

