
CS4405 – Analysis of Concurrent and Distributed Programs

Many Flavors of Concurrency:
Asynchronous and Event-Driven

Programming

Burcu Kulahcioglu Ozkan

Many flavours of concurrency

§ Concurrent programming
§ Multiple tasks can be in progress at any instant

§ Parallel programming
§ Utilizing more than one processors for running the program

§ Asynchronous programming
§ Programming with non-blocking requests/method calls

§ Event-driven programming
§ The flow of the execution is determined by the (possibly concurrent) events

§ Distributed programming
§ Multiple computers run as a single system

Burcu Kulahcioglu Ozkan, CS4405

Many authors consider shared-memory programs to be “parallel” and
distributed-memory programs to be “distributed”

Single-threaded asynchronous programming

Burcu Kulahcioglu Ozkan, CS4405

Asynchronous programming

What does the following JS code print to the console?

Burcu Kulahcioglu Ozkan, CS4405

function myfunc() {
console.log(' Here ')

}

setTimeout(myfunc, 2)

console.log(' I am ')

Asynchronous programming allows us to execute a block of code without blocking the caller thread

Asynchronous programming refers to a style of structuring a program whereby a call to some unit of
functionality triggers an action that is allowed to continue outside of the ongoing flow of the program.

[https://nodesource.com/blog/why-asynchronous/]

https://nodesource.com/blog/why-asynchronous

Synchronous vs asynchronous

function myfunc(s) {

console.log(s)
}

myfunc('A‘)

myfunc(‘B‘)

console.log('C')

Burcu Kulahcioglu Ozkan, CS4405

function myfunc(s) {

console.log(s)
}

setTimeout(myfunc, 2, 'A‘)

setTimeout(myfunc, 2, ‘B‘)

console.log('C')

Asynchrony using callbacks

§ Callback is any reference to executable code that is passed as an argument to
other code; that other code is expected to call back (execute) the code at a given
time. This execution may be immediate as in a synchronous callback, or it might
happen at a later point in time as in an asynchronous callback

§ Do not block, call it back when needed.

§ Programming languages support callbacks in different ways, e.g., lambda
expressions, blocks, function pointers.

Burcu Kulahcioglu Ozkan, CS4405

Timeout callbacks:

console.log(' Let\'s start! \n')

setTimeout(() => {
console.log(' Here ')

}, 2)

setTimeout(() => {
console.log(' I am ')

}, 2)

Burcu Kulahcioglu Ozkan, CS4405

Sets a timer and executes the callback function after the timer expires

What does the JS code above print?

User event callbacks:

Burcu Kulahcioglu Ozkan, CS4405

document.getElementById("demo").onclick = function() {

myFunction()

};

function myFunction() {

document.getElementById("demo").innerHTML = "CLICKED!";

}

Calls the callback function whenever the event occurs

Network event callbacks
const req = new XMLHttpRequest(),
method = "GET",
url = "https://cs4405.github.io/";

req.open(method, url, true);

// set up the callback
req.onreadystatechange = function () {

if(req.readyState === XMLHttpRequest.DONE) {
var status = req.status;
if (status === 0 || (status >= 200 && status < 400)) {

// The request has been completed successfully
console.log(' Here ')

} else {
console.log(' Error on call 1 ')

}
}

};

req.send();

console.log(' I am ')

Burcu Kulahcioglu Ozkan, CS4405

Example with multiple callbacks: What does it print?
const req1 = new XMLHttpRequest(), method1 = "GET",
url1 = "https://cs4405.github.io/slides/lecture-3.pdf";
req1.open(method1, url1, true);

req1.onreadystatechange = function () {
if(req1.readyState === XMLHttpRequest.DONE) {

if (req1.status === 0 || (req1.status >= 200 && req1.status < 400)) {
console.log(' Call 1 resolved')

}
}};

const req2 = new XMLHttpRequest(), method2 = "GET",
url2 = "http://cs4405.github.io/";
req2.open(method2, url2, true);

req2.onreadystatechange = function () {
if(req2.readyState === XMLHttpRequest.DONE) {

if (req2.status === 0 || (req2.status >= 200 && req2.status < 400)) {
console.log(' Call 2 resolved')

}
}};

req1.send();
req2.send();

Burcu Kulahcioglu Ozkan, CS4405

Single threaded event loop:

Burcu Kulahcioglu Ozkan, CS4405

event/message queue

Nested callbacks

Burcu Kulahcioglu Ozkan, CS4405

window.addEventListener('load', () => {

document.getElementById('button').addEventListener('click', () => {

setTimeout(() => {

items.forEach(item => {

// some code here

})

}, 2000)

})

})

Nested callbacks, aka, “callback hell”

firstFunction(args, function() {

. . .
secondFunction(args, function() {
. . .

thirdFunction(args, function() {
. . .

// And so on…
});

});
});

Structured asynchrony: Promises (ES2015)

§ A promise is commonly defined as a proxy for a value that will eventually
become available
§ Once a promise has been called, it will start in pending state.
§ The caller is not blocked: it continues its execution
§ Promise can be resolved in: resolved state or rejected state

Burcu Kulahcioglu Ozkan, CS4405

const checkIfItsDone = () => {

p.then(ok => { console.log(ok) })

.catch(err => { console.error(err) })

}

const fetchPromise = fetch("https://. . .");

fetchPromise.then(response => {

console.log(response);

});

Structured asynchrony: Chaining promises

§ A promise can be returned to another promise, creating a chain of promises.

Burcu Kulahcioglu Ozkan, CS4405

const chainAll = () => {

first.then(ok => { second (..) })

.then(ok => { third (..) })

.catch(err => { console.error(err) })

}

firstFunction(args, function() {

. . .
secondFunction(args, function() {
. . .

thirdFunction(args, function() {
. . .

// And so on…
});

});
});

Implemented in JavaScript, Node. js, Scala, Java, C++, etc

callbacks promises

Another example for chaining promises

const status = response => {

if (response.status >= 200 && response.status < 300) {

return Promise.resolve(response)

}

return Promise.reject(new Error(response.statusText))

}

const json = response => response.json()

fetch('/todos.json’)

.then(status)

.then(json)

.then(data => { console.log('Request succeeded with JSON response', data) })

.catch(error => { console.log('Request failed', error) })

Example from: https://flaviocopes.com/javascript-callbacks/

Structured asynchrony: Async/await (ES2017)

§ A higher level abstraction built on promises

Burcu Kulahcioglu Ozkan, CS4405
Implemented in C# 5.0, C++, Python 3.5, F#, Kotlin 1.1, Rust 1.39, JavaScript ES2017, Scala (beta), etc

const doSomethingAsync = () => {

return new Promise(resolve => {

setTimeout(() => resolve('I did something'), 3000)

})

}

const doSomething = async () => {

console.log(await doSomethingAsync())

}

console.log('Before')

doSomething()

console.log('After')

Structured asynchrony: Async/await

§ Simpler to read code, similar to synchronous calls

Example from: https://flaviocopes.com/javascript-async-await/

const getFirstUserData = () => {

return fetch('/users.json')

.then(response => response.json())

.then(users => users[0])

.then(user => fetch(`/users/${user.name}`))

.then(userResponse => userResponse.json())

}

getFirstUserData()

const getFirstUserData = async () => {

const response = await fetch('/users.json')

const users = await response.json()

user = users[0]

const userResponse = await fetch(`/users/${user.name}`)

const userData = await userResponse.json()

}

getFirstUserData()

promises async/await

Why use asynchrony?

Example from: https://devblogs.microsoft.com/visualstudio/how-do-i-think-about-async-code/

§ Increase responsiveness: Less blocking
§ Increase scalability: Programs can serve for multiple requests concurrently

Asynchronous programming pros and cons:

Example from: https://devblogs.microsoft.com/visualstudio/how-do-i-think-about-async-code/

üNo low-level race conditions
üControl over task switching

x Difficult to implement correctly: Complex control flow
x Need to be careful with the load for better performance

Concurrency errors due to asynchrony: Data races

§ Caused by the nondeterminism in the event dispatch, network responses, CPU speed, etc.

§ The traditional definition of a data race (for multithreaded programs) does not apply directly

§ [Petrov. et. al, 2012] identifies several types of data races in web applications and proposes
WEBRACER dynamic race detector for web applications
§ Based on a definition of a happens-before relation for JS and HTML features

§ Let 𝐴, 𝐴! ∈ 𝑟𝑒𝑎𝑑,𝑤𝑟𝑖𝑡𝑒 ×𝑂𝑝𝐼𝑑 be memory accesses to some logical location (JavaScript variable
or an HTML elements in the DOM) 𝑚 in an execution. A race exists between 𝐴 and 𝐴! if:
§ 𝑜𝑝 𝐴 ≠ 𝑜𝑝(𝐴′)
§ 𝐴 and 𝐴! are not related with happens-before relation
§ one of the accesses 𝐴 and 𝐴! is a write

[Petrov. et. al, 2012] Race detection for web applications
B. Petrov, M. T. Vechev, M. Sridharan, J. Dolby. PLDI 2012

Data races in JS programs

Burcu Kulahcioglu Ozkan, CS4405

§ Data race on a variable

Data races in JS programs

Burcu Kulahcioglu Ozkan, CS4405

§ Data race on an HTML element (the access of an element may occur before its creation)

§ More: Data races on functions, event dispatches

Concurrency errors due to asynchrony: Atomicity violation

Statically locating web application bugs caused by asynchronous calls. Zheng, Y., Bao, T., & Zhang, X. WWW’11

Atomicity between what the user triggers and what he sees If P1 updates some data that is used by R2 , R2 is operates on
the new data instead of what the user sees

Assume an object is tested to be not null in R1. An interleaving
R2 may et the object to null and lead to an exception in P1

When the user performs A3 according to what he sees, he might
get confused and think that he is operating on the result of A1 .

Some concurrency analysis works for single-threaded asynchrony (tbc)

• Statically locating web application bugs caused by asynchronous calls. Y. Zheng, T., X. Zhang. WWW 2011
• Race detection for web applications B. Petrov, M. T. Vechev, M. Sridharan, J. Dolby. PLDI 2012
• I Know It When I See It: Observable Races in JavaScript Applications E. Mutlu, S. Tasiran, B. Livshits. Dyla@PLDI

2014
• A comprehensive study on real world concurrency bugs in Node.js. J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K.

Yin, J. Wei. ASE 2017
• Deferrability Analysis for JavaScript J. Kloos, R. Majumdar, F. McCabe. Haifa Verification Conference 2017
• Detecting atomicity violations for event-driven Node.js applications. X. Chang, W. Dou, Y. Gao, J. Wang, J.

Wei, T. Huang. ICSE 2019
• Enabling Additional Parallelism in Asynchronous JavaScript Applications. E. Arteca, F. Tip, M. Schäfer. ECOOP

2021
• Race Detection for Event-Driven Node.js Applications. X. Chang, W. Dou, J. Wei, T. Huang, J. Xie, Y. Deng, J.

Yang, J. Yang. ASE 2021.

and more …

Burcu Kulahcioglu Ozkan, CS4405

Multi-threaded asynchronous programming

Burcu Kulahcioglu Ozkan, CS4405

Multithreaded asynchronous programming

§ Asynchronous method calls + multithreading
§ Asynchronous calls run in parallel to the main thread

Burcu Kulahcioglu Ozkan, CS4405

C# Async/Await: Asynchronous and multithreaded

What does the following JS code print on the console?

setTimeout(() => {
console.log('Here I am');

}, 2)

let i = 1;
while (i < 1000) {

console.log(i);
i++;

}

Burcu Kulahcioglu Ozkan, CS4405

Single-threaded asynchrony: Asynchronous task does not interleave with the caller task

Burcu Kulahcioglu Ozkan, CS4405

public static void Main()

{

myFunction();

int i = 1;

while (i < 1000) {

Console.WriteLine(i);

i++;

}

}

async public static void myFunction() {

await Task.Run(() => {

Task.Delay(200).Wait();

Console.WriteLine(" Log from async!");

});

}

What does the following C# code print on the console?

Multi-threaded asynchrony: Asynchronous task can interleave with the caller task

Multithreaded asynchronous programming

Prone to:

§ Data races

§ Order violation

§ Atomicity violation

§ Deadlocks

Burcu Kulahcioglu Ozkan, CS4405

§ Inherits the challenges of multithreaded concurrency
§ + more complex execution flow

Event-driven programming

Burcu Kulahcioglu Ozkan, CS4405

Event-driven programming

§ The program is written as a set of event handlers

§ It listens for events The flow of execution is determined by the invocation of the events

§ Generally, a main loop that listens for events (e.g., user interactions, notifications) and then triggers
the callback function of the invoked events

§ Ex: Javascript web applications, mobile applications

Burcu Kulahcioglu Ozkan, CS4405

event/message queue

Event-driven programming: Main thread + background threads

§ Do not block the UI thread, asynchronously call IO operations, delegate long-
running tasks to the background threads

Burcu Kulahcioglu Ozkan, CS4405

Event-driven programming: Multiple looper threads

Burcu Kulahcioglu Ozkan, CS4405

Event-driven programming: Asynchronous task posting to UI thread

Burcu Kulahcioglu Ozkan, CS4405

e.g. AsyncTask callbacks, or
onrunOnUIThread method in Android API

Image credit: https://androidkennel.org/

Some concurrency analysis works for multi-threaded asynchrony (tbc)

• Race detection for Android applications. P. Maiya, A. Kanade, R. Majumdar. PLDI 2014:

• Race detection for event-driven mobile applications. Hsiao, C. Pereira, J. Yu, G. Pokam, S. Narayanasamy, P. M. Chen, Z. Kong, J. Flinn.
PLDI 2014:

• Retrofitting concurrency for Android applications through refactoring. Y. Lin, C. Radoi, D. Dig. SIGSOFT FSE 2014:

• Systematic Asynchrony Bug Exploration for Android Apps. B. Kulahcioglu Ozkan, M. Emmi, S. Tasiran. CAV 2015:

• Systematic testing of asynchronous reactive systems. Ankush Desai, Shaz Qadeer, Sanjit A. Seshia. ESEC/SIGSOFT FSE 2015

• Effectively Manifesting Concurrency Bugs in Android Apps. Q. Li, Y. Jiang, T. Gu, C. Xu, J. Ma, X. Ma, J. Lu. APSEC 2016:

• Verifying Robustness of Event-Driven Asynchronous Programs Against Concurrency. A. Bouajjani, M. Emmi, C. Enea, B. Kulahcioglu
Ozkan, S. Tasiran. ESOP 2017:

• Static deadlock detection for asynchronous C# programs. A. Santhiar, A. Kanade. PLDI 2017:

• Static detection of event-based races in Android apps. Y. Hu, I. Neamtiu. ASPLOS 2018:

and more …

Burcu Kulahcioglu Ozkan, CS4405

Revisit: Many flavours of concurrency

§ Concurrent programming
§ Multiple tasks can be in progress at any instant

§ Parallel programming
§ Utilizing more than one processors for running the program

§ Asynchronous programming
§ Programming with non-blocking requests/method calls

§ Event-driven programming
§ The flow of the execution is determined by the (possibly concurrent) events

§ Distributed programming
§ Multiple computers run as a single system

Burcu Kulahcioglu Ozkan, CS4405

Many authors consider shared-memory programs to be “parallel” and
distributed-memory programs to be “distributed”

Takeaways

§ Know your execution model

§ Know your programming model
§ The semantics of concurrency constructs

§ Do not reinvent the wheel if not necessary

§ Beware of asynchrony and concurrency J

Burcu Kulahcioglu Ozkan, CS4405
https://www.reddit.com/r/ProgrammerHumor/comments/st360l/multi_mess/

