
Weak Memory Concurrency-II

Soham Chakraborty

02.03.2022



Outline

Axioms & Properties
Coherence
Atomicity

Relaxed Memory Models in Programming Languages

Relaxed Memory Models in Architectures

2



Coherence

SC per location

(poloc ∪ rf ∪ fr ∪mo) is acyclic

Examples: coherence violations

X = 1;
X = 2;
a = X ; // 1

a = X ; // 1
X = 1;

X = 1;
X = 2;

a = X ; // 2
b = X ; // 1

X = 1;
a = X ; // 2

X = 2;
b = X ; // 1

3



Atomicity

Atomicity: rmw ∩ (fr;mo) = ∅

Examples: Atomicity violations

X = 0;
CAS(X , 0, 1); CAS(X , 0, 1);

Both CAS operations cannot be successful

4



Release-Acquire Consistency

All writes are release and all reads are acquire accesses

Follows (sc-per-loc) and (atomicity)

Reordering restrictions: WW, RR, RW (same as TSO)

Example: Allowed behaviors (same as TSO)

X = Y = 0;

X = 1;
Y = 1;

a = Y ; // 1
b = X ; // 0

X = Y = 0;

X = 1;
a = Y ; // 0

Y = 1;
b = X ; // 0

5



Release-Acquire Consistency

Reordering restrictions: WW, RR, RW (same as TSO)

Allows non-multicopy atomicity unlike TSO

Example:

X = Y = 0;

X = 1;
a = X ;
b = Y ;

c = Y ;
d = X ;

Y = 1;

Outcome a = c = 1, b = d = 0 is allowed in RA but not in TSO

6



Release-Acquire Consistency

Axioms

(poloc ∪ rf ∪ fr ∪mo) is acyclic (sc-per-loc)

rmw ∩ (fr;mo) = ∅ (atomicity)

hb; eco? is irreflexive where (RA)
hb , (po ∪ rf)+

eco = (rf ∪ fr ∪mo)+

7



Mappings: RA to TSO

W ; W, R ; R, CAS ; CAS , F ; F

Mapping Correctness: Suppose a program P in RA is mapped to
P ′ in TSO following the above mapping scheme. For each
TSO-consistent execution of P ′ there exists an RA-consistent
execution of P having same behavior.

Behavior: Final values in the shared memory locations

8



C/C++ Concurrency

Non-atomic accesses

Relaxed accesses

Acquire, release accesses and fences

SC accesses and SC fence

Formal model is known as C11

9



Relations

Synchronization relation is established by
Release acquire accesses
Relaxed accesses and fences

Happens-before: hb = (po ∪ sw)+

10



Data Race

a and b is a data race (on non-atomics) when
a and b are concurrent (not related by hb)
Access same memory location
Atleast one of a or b is non-atomics

A consistent execution with data race on non-atomic
=⇒ the behavior of the program is undefined

X = 0

Xna = 1; a = Xacq;

a > 1 is possible in C/C++

11



OOTA

OOTA: out-of-thin-air behavior

X = Y = 0

a = X ;
if(a == 1)
Y = 1;

b = Y ;
if(b == 1)
X = 1;

(LBDep)

X = Y = 0

a = X ;
Y = 1;

b = Y ;
X = 1;

(LB)

Undesirable: C11 allows a = b = 1 in both programs

Desirable: Allow a = b = 1 in (LB), but forbid in (LBDep)

12



Architecture Memory Models

Examples: x86, ARMv8, ARMv7, Power

Dependency orders accesses (unlike C11)
(LB) and (LBDep) programs

Fences are different

Data race has no undefined behavior

13



Discussions

Why different memory models?

Role of compilers

Considerations for a new memory model

Analysis tools

14



References

Mathematizing C++ Concurrency.
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber.
In POPL 2011

Chapter 2 (Background)
Correct Compilation of Relaxed Memory Concurrency.
Soham Chakraborty
http:
//plv.mpi-sws.org/soham/thesis/Thesis-Chakraborty.pdf

15

http://plv.mpi-sws.org/soham/thesis/Thesis-Chakraborty.pdf
http://plv.mpi-sws.org/soham/thesis/Thesis-Chakraborty.pdf

