
Concurrency analysis for multithreaded programs

Soham Chakraborty

18.02.2022

Outline

Analysis Techniques

Data race detection

Atomicity violation detection

2

Analysis Techniques

Static analysis

Model checking

Dynamic analysis

Testing

Predictive analysis

3

Static analysis

Program analysis techniques

+ Interested in reasoning about all executions

+ No overhead in runtime

Scales better

- Main challenges: Dynamic features
Dynamic class loading
Dynamic dispatch, indirect function call, reflection

- Conservative analysis and over-approximation
False positives

4

Verification

Model checking

Reasons about all executions

Explores state space (enumerative, symbolic)

Static approach, no overhead in runtime

Main challenge: scalability
- Over-approximation & False positives

abstraction refinement

5

Dynamic Analysis & Testing

Reasons about one executions

Instruments program
Should not affect program behavior e.g. thread scheduling

On the fly analysis or trace analysis after execution

6

Predictive Analysis

A variant of dynamic analysis

Instrument program to collect a trace

Reasons about related executions
e.g. Given a program with a property P , is there an alternative
execution that satisfy property ¬P?

7

Data Race

Event a and b is in data race if:
a and b are concurrent/in concflict
a and b access same location
At least one of a and b is a write

8

Concurrent Accesses

Concurrent: (e1, e2), (e2, e3)

e3 happens-before e1

end(e3)→ start(e1)

9

Happens-Before

concurrent/conflict ⇒ Not in happens-before (HB) order

Execution 1: No data race
Execution 2: data race on x

10

Example

lock(mu1);
v = v + 1;
unlock(mu1);

lock(mu2);
v = v + 1;
unlock(mu2);

Execution Trace

lock(mu1);

v = v + 1;

unlock(mu1);

lock(mu2);

v = v + 1;

unlock(mu2);

11

Data Race Detection

Lockset algorithm

Example:

12

Data Race Detection

Lockset algorithm

Example:

12

Common False Positives

Initialization: Shared variables are initialized without holding a
lock.

Read-Sharing: read-only shared variable (written only during
initialization). Read-only variables can be safely accessed without
locks.

Read-Write Locks: Allows multiple readers but a single writer.

13

Observations

If a variable is accessed by a single thread, no effect on analysis

no need to protect a variable if it is read-only

It is possible to refine the algorithm

14

State of All Locations

State of each shared variable

Race conditions are issued only in the Shared-Modified state

15

Example

int v ;
v = 0;
lock(mu2);
v = v + 1;
unlock(mu2);

lock(mu1);
v = v + 1;
unlock(mu1);

Execution Trace

int v ;
v = 0;
lock(mu1);

v = v + 1;

unlock(mu1);

lock(mu2);

v = v + 1;

unlock(mu2);

16

Example

Program locks_held C(v) State(v)
int v; {} {mu1, mu2} Virgin

v = 1024;
Exclusive

lock(mu1);
{mu1}

v = v+1; Shared
Shared-Modified

unlock(mu1) {mu1}
{}

lock(mu2)
{mu2}

v = v+1;
{}

Race detected
unlock(mu2)

{}

17

Improved Algorithm

Warnings are issued only in the Shared-Modified state

18

Atomicity Checking

"a method is atomic if its execution is not affected by and does not
interfere with concurrently executing threads."
– Atomizer

Dynamic analysis on an execution trace

Execution trace is a state transition system

19

Data race vs Atomicity

Absence of data race 6⇒ atomicity

Example from java.lang.StringBuffer

20

Multithreaded Program

State transition: Σ0
act1−−→ Σ1

act2−−→ . . .

Each thread has serial execution

The actions from the serial executions interleave
21

Reduction

Consider actions from concurrently running threads

The actions can reorder without affecting the program state

Example:

22

Right and Left Movers

Example:

b is a right-mover action (R) and c is a left mover action (L)

23

Mover Actions

ACQ is right mover

24

Mover Actions

REL is left mover

25

Mover Actions

REL is left mover

26

Both Mover Action

Both-mover (B): every access of a well-protected shared variable
Race free access

Shared variable m is always protected by lockset L

thread t holds at least one lock in L during the access to m

27

Non-Mover Actions

Non-mover (N): access of a variable for which all accesses are not
well-protected

Shared variable m is always protected by lockset L

thread t holds no lock in L during the access to m

28

Example: Atomicity Checking

1 acquires a lock m,
2 reads a variable x and then writes x (protected by m)
3 release m

Execution path is interleaved with actions from other threads

the thread has a serial execution which does not interleave with
other threads

Satisfies atomicity

29

Actions and Movers

Σ0
acq(lock)−−−−−→ Σ1

j=bal−−−→ Σ2
bal=j+n−−−−−→ Σ3

rel(lock)−−−−−→

⇓

Σ0
R−→ Σ1

B−→ Σ2
B−→ Σ3

L−→

30

Reduction Method

Atomicity checking:

Reducible methods: (R | B)∗[N](L | B)∗

31

Reduction Method

Atomicity checking:

Reducible methods: (R | B)∗[N](L | B)∗

31

Atomizer Algorithm

Instrumented code calls Atomizer runtime

Lockset algorithm identifies races
classify movers/non-movers

Atomizer checks reducibility of atomic blocks
If not reducible: warns about atomicity violations

32

Atomizer Algorithm

Instrumented code calls Atomizer runtime

Lockset algorithm identifies races
classify movers/non-movers

Atomizer checks reducibility of atomic blocks
If not reducible: warns about atomicity violations

32

References

Eraser: A Dynamic Data Race Detector for Multithreaded Programs
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
Thomas Anderson. ACM TOCS 1997.

A Dynamic Atomicity Checker for Multithreaded Programs.
C Flanagan and S. Freund.
POPL 2004.

Analysis of Concurrent Programs
Swarnendu Biswas
CS 636, Semester 2020-2021-II, IIT Kanpur

Research on Atomicity
Cormac Flanagan
https://users.soe.ucsc.edu/ cormac/atom.html

33

