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Analysis Techniques

Data race detection
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Analysis Techniques

Static analysis

Model checking

Dynamic analysis

Testing

Predictive analysis
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Static analysis

Program analysis techniques

+ Interested in reasoning about all executions

+ No overhead in runtime

Scales better

- Main challenges: Dynamic features
Dynamic class loading
Dynamic dispatch, indirect function call, reflection

- Conservative analysis and over-approximation
False positives
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Verification

Model checking

Reasons about all executions

Explores state space (enumerative, symbolic)

Static approach, no overhead in runtime

Main challenge: scalability
- Over-approximation & False positives

abstraction refinement
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Dynamic Analysis & Testing

Reasons about one executions

Instruments program
Should not affect program behavior e.g. thread scheduling

On the fly analysis or trace analysis after execution
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Predictive Analysis

A variant of dynamic analysis

Instrument program to collect a trace

Reasons about related executions
e.g. Given a program with a property P , is there an alternative
execution that satisfy property ¬P?
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Data Race

Event a and b is in data race if:
a and b are concurrent/in concflict
a and b access same location
At least one of a and b is a write
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Concurrent Accesses

Concurrent: (e1, e2), (e2, e3)

e3 happens-before e1

end(e3)→ start(e1)
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Happens-Before

concurrent/conflict ⇒ Not in happens-before (HB) order

Execution 1: No data race
Execution 2: data race on x
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Example

lock(mu1);
v = v + 1;
unlock(mu1);

lock(mu2);
v = v + 1;
unlock(mu2);

Execution Trace

lock(mu1);

v = v + 1;

unlock(mu1);

lock(mu2);

v = v + 1;

unlock(mu2);
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Data Race Detection

Lockset algorithm

Example:
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Data Race Detection

Lockset algorithm

Example:
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Common False Positives

Initialization: Shared variables are initialized without holding a
lock.

Read-Sharing: read-only shared variable (written only during
initialization). Read-only variables can be safely accessed without
locks.

Read-Write Locks: Allows multiple readers but a single writer.
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Observations

If a variable is accessed by a single thread, no effect on analysis

no need to protect a variable if it is read-only

It is possible to refine the algorithm
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State of All Locations

State of each shared variable

Race conditions are issued only in the Shared-Modified state
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Example

int v ;
v = 0;
lock(mu2);
v = v + 1;
unlock(mu2);

lock(mu1);
v = v + 1;
unlock(mu1);

Execution Trace

int v ;
v = 0;
lock(mu1);

v = v + 1;

unlock(mu1);

lock(mu2);

v = v + 1;

unlock(mu2);
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Example

Program locks_held C(v) State(v)
int v; {} {mu1, mu2} Virgin

v = 1024;
Exclusive

lock(mu1);
{mu1}

v = v+1; Shared
Shared-Modified

unlock(mu1) {mu1}
{}

lock(mu2)
{mu2}

v = v+1;
{}

Race detected
unlock(mu2)

{}

17



Improved Algorithm

Warnings are issued only in the Shared-Modified state
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Atomicity Checking

"a method is atomic if its execution is not affected by and does not
interfere with concurrently executing threads."
– Atomizer

Dynamic analysis on an execution trace

Execution trace is a state transition system
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Data race vs Atomicity

Absence of data race 6⇒ atomicity

Example from java.lang.StringBuffer
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Multithreaded Program

State transition: Σ0
act1−−→ Σ1

act2−−→ . . .

Each thread has serial execution

The actions from the serial executions interleave
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Reduction

Consider actions from concurrently running threads

The actions can reorder without affecting the program state

Example:
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Right and Left Movers

Example:

b is a right-mover action (R) and c is a left mover action (L)
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Mover Actions

ACQ is right mover
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Mover Actions

REL is left mover
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Mover Actions

REL is left mover
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Both Mover Action

Both-mover (B): every access of a well-protected shared variable
Race free access

Shared variable m is always protected by lockset L

thread t holds at least one lock in L during the access to m
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Non-Mover Actions

Non-mover (N): access of a variable for which all accesses are not
well-protected

Shared variable m is always protected by lockset L

thread t holds no lock in L during the access to m
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Example: Atomicity Checking

1 acquires a lock m,
2 reads a variable x and then writes x (protected by m)
3 release m

Execution path is interleaved with actions from other threads

the thread has a serial execution which does not interleave with
other threads

Satisfies atomicity

29



Actions and Movers

Σ0
acq(lock)−−−−−→ Σ1

j=bal−−−→ Σ2
bal=j+n−−−−−→ Σ3

rel(lock)−−−−−→

⇓

Σ0
R−→ Σ1

B−→ Σ2
B−→ Σ3

L−→
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Reduction Method

Atomicity checking:

Reducible methods: (R | B)∗[N](L | B)∗
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Reduction Method

Atomicity checking:

Reducible methods: (R | B)∗[N](L | B)∗
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Atomizer Algorithm

Instrumented code calls Atomizer runtime

Lockset algorithm identifies races
classify movers/non-movers

Atomizer checks reducibility of atomic blocks
If not reducible: warns about atomicity violations
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Atomizer Algorithm
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