Concurrency analysis for multithreaded programs J

Soham Chakraborty

18.02.2022

QOutline

Analysis Techniques

Data race detection

Atomicity violation detection

Analysis Techniques

Static analysis

Model checking

Dynamic analysis

Testing

Predictive analysis

Static analysis

Program analysis techniques

+ Interested in reasoning about all executions
+ No overhead in runtime

Scales better

- Main challenges: Dynamic features
@ Dynamic class loading
e Dynamic dispatch, indirect function call, reflection

- Conservative analysis and over-approximation

e False positives

Verification

Model checking

Reasons about all executions

Explores state space (enumerative, symbolic)

Static approach, no overhead in runtime

Main challenge: scalability
- Over-approximation & False positives

@ abstraction refinement

Dynamic Analysis & Testing

Reasons about one executions

Instruments program

@ Should not affect program behavior e.g. thread scheduling

On the fly analysis or trace analysis after execution

Predictive Analysis

A variant of dynamic analysis

Instrument program to collect a trace

Reasons about related executions
e.g. Given a program with a property P, is there an alternative
execution that satisfy property —P?

Data Race

Event a and b is in data race if:
@ a and b are concurrent/in concflict
@ a and b access same location

@ At least one of a and b is a write

Concurrent Accesses

event e3 ------ | ----- | ________________ -

Concurrent: (e1, e2), (e2,e3)

e3 happens-before ¢e;
e end(e3) — start(e;)

Happens-Before

concurrent/conflict = Not in happens-before (HB) order

thread-1 thread-2

® =1

lock (L)

y =1
inlock(dal

v

¥ =

thread-3

unlock (L)

b

thread-1

thread-2

thread-3

lock (L)
y 2
anlock (L)

——> intra-thread order

Execution 1: No data race
Execution 2: data race on x

~---3» synchronization order

— happened-before order

Example

lock(mul);
v=v+1,
unlock(mul);

Execution Trace

lock(mul);
v=v+1,
(;)c:k(vm:21);; unlock(mul);
unlock(mu?); lock(mu?);
v=v+1;
unlock(mu?);

11

Data Race Detection

Lockset algorithm

Let locks_held(t) be the set of locks held by thread ¢.

For each v, initialize C(v) to the set of all locks.
On each access to v by thread ¢,
set C(v) := C(v) N locks_held(t);

if C(v) = {], then issue a warning.

12

Data Race Detection

Lockset algorithm

Let locks_held(t) be the set of locks held by thread ¢.
For each v, initialize C(v) to the set of all locks.
On each access to v by thread ¢,

set C(v) := C(v) N locks_held(t);

if C(v) = {], then issue a warning.

Example:
Program locks_held Clv)
{1 {mul,mu2}
lock(mul) ;
{mul}
v o= wv+l;
{mul}
unlock(mul) ;
{1
lock(mu2);
{mu2}
v o= v+l;
{}

unlock(mu2) ;

(1 12

Common False Positives

Initialization: Shared variables are initialized without holding a
lock.

Read-Sharing: read-only shared variable (written only during
initialization). Read-only variables can be safely accessed without
locks.

Read-Write Locks: Allows multiple readers but a single writer.

13

Observations

If a variable is accessed by a single thread, no effect on analysis

no need to protect a variable if it is read-only

It is possible to refine the algorithm

14

State of All Locations

State of each shared variable

Race conditions are issued only in the Shared-Modified state

rdfwr, first
wr

Wr, new
thread

Shared—
Modified

Wr

15

Example

Execution Trace

int v;
v =0;

int v lock(mul);

vV = 0' i V=V + 1,

lock(mu2): lock(mul);

- _ v=v+1; unlock(mul);
v=v+1,
unlock(mul);

unlock(mu?); lock(mu2);
v=v+41,
unlock(mu?);

16

Example

Program locks held C(v) State(v)
int v; {3 {mul, mu2} Virgin
v = 1024;
Exclusive
lock(mul);
{mul}
Shared
V=il Shared-Modified
unlock(mul) {mul}
{
lock(mu?2)
{mu2}
v = v+1;
{3
Race detected
unlock(mu?2)
{

17

Improved Algorithm

Let locks_held(t) be the set of locks held in any mode by thread ¢.
Let write_locks_held(t) be the set of locks held in write mode by thread ¢.
For each v, initialize C(v) to the set of all locks.
On each read of v by thread ¢,
set C(v) := C(v) N locks_held(t);
if C(v) := { }, then issue a warning.
On each write of v by thread ¢,
set C(v) := C(v) N write_locks_held(t);
if C(v) = { }, then issue a warning.

Warnings are issued only in the Shared-Modified state

18

Atomicity Checking

"a method is atomic if its execution is not affected by and does not
interfere with concurrently executing threads."
— Atomizer

Dynamic analysis on an execution trace

Execution trace is a state transition system

19

Data race vs Atomicity

Absence of data race # atomicity

Example from java.lang.StringBuffer

public final class StringBuffer {

public synchronized
StringBuffer append(StringBuffer sb) {
int len = sb.length();
/f other threads may change sb.length(),
// so len does not reflect the lemgth of sb
sb.getChars(0, len, value, count);

t
public synchronized int lemgth() { ... }

public synchronized veid getChars(...) { ... }

}

20

Multithreaded Program

wt € Tid
TE Var
vE Value
me Lock
g € GlobalStore = [Var — Value) U (Lock — (Tid U {L}))
w € LocalStore
Il € LocalStores = Tid — LocalStore
Ye State = GlobalStore x LocalStores
a € Operation = rd(z,v) | wr(z,v)
acg(m) | rel{m)
| begin|end|e
[ACT READ] [ACT WRITE] [ACT OTHER]
alz)=v a € {begin, end, €}

rd(z,v wriz,v a
0.4,![.]0. O_Ht(.) Ty T

afr 1=]

[ACT ACQUIRE] [ACT RELEASE]
o(m) =1 a(m) =t

o —)?cq{m] alm :=1] T —«;‘ﬂ{m] alm := 1]

State transition: Yo -t ¥, 22

Each thread has serial execution

The actions from the serial executions interleave

21

Reduction

Consider actions from concurrently running threads

The actions can reorder without affecting the program state

Example:

22

Right and Left Movers

Example:

b is a right-mover action (R) and c is a left mover action (L)

23

Mover Actions

AcaqY ¢
0 N » 1 = > 23
e . “a .

ACQ is right mover

24

Mover Actions

2 > 2,

%o REL(t)

REL is left mover

25

Mover Actions

2 > 2,

%o REL(t)

REL is left mover

26

Both Mover Action

Both-mover (B): every access of a well-protected shared variable
@ Race free access

b mem(m, L, t)
PIN > 2 > 2
mem(m, L, t) b
2 > 2, > 2

Shared variable m is always protected by lockset L

thread t holds at least one lock in L during the access to m

Non-Mover Actions

Non-mover (N): access of a variable for which all accesses are not

well-protected

b mem(m, L, t)
Z, Z Zg

mem(m, L, t) b
Z, Z, Zg

Shared variable m is always protected by lockset L

thread t holds no lock in L during the access to m

28

Example: Atomicity Checking

@ acquires a lock m,
@ reads a variable x and then writes x (protected by m)

© release m

Execution path is interleaved with actions from other threads

acg(m) by rd(z,0) bs wr(xz,1) bs rel(m)
o~ = 2 2k B 2 5~ .- X7
. .’ "‘w: lv -
7 i Tea .- .
PN ’ - - ~
’ ~ ’, "" A Y
’, A Y ’, —‘ - N
BN # -~z LN b
by acqg(m) rd(z,0) wr(z,l) rel(m) bo bs
20 - 2’1 > 2’2 - Zg - Eil - 2’5 - Eé 37

the thread has a serial execution which does not interleave with
other threads

@ Satisfies atomicity

29

acq(lock j=bal bal=j+n rel(lock
Zo ()> 21 J > 22] > 23 ()>

¢

R B B L
ZO—)21—>Z2—>Z3—)

30

Reduction Method

acq(this) X j=bal Y bal=j+n z rel(this)
So TS ;7S5 S, Ss S S,
\\‘\\\\ \\\\ ///
\\\\\ \\\ ///
S~o SN e
~~ “u P
X Y acq(this) j=bal bal=j+n rel(this) z
S, s, s, s, s, S, S s,

31

Reduction Method

acq(this) X j=bal Y bal=j+n z rel(this)

- \\
X Y acq(this) j=bal bal=j+n rel(this) z

S S, S, S, S, S; S s,

Atomicity checking:

Reducible methods: (R | B)*[N](L | B)*

RIB LB

start atomic

block InRight

31

Atomizer Algorithm

Instrumented code calls Atomizer runtime
Lockset algorithm identifies races

o classify movers/non-movers

Atomizer checks reducibility of atomic blocks

@ If not reducible: warns about atomicity violations

32

Atomizer Algorithm

Instrumented code calls Atomizer runtime
Lockset algorithm identifies races

o classify movers/non-movers

Atomizer checks reducibility of atomic blocks

@ If not reducible: warns about atomicity violations

m

-

REL(l,t)

InLeft Wrong
MEM(m,a;t) and
MEM(m,at) and m s unprotected
mis unprotected END
REL(L,t)
Outside

InRight <’mEGTN’__ Atomic

Acq(lt)

References

Eraser: A Dynamic Data Race Detector for Multithreaded Programs
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
Thomas Anderson. ACM TOCS 1997.

A Dynamic Atomicity Checker for Multithreaded Programs.
C Flanagan and S. Freund.
POPL 2004.

Analysis of Concurrent Programs
Swarnendu Biswas
CS 636, Semester 2020-2021-1I, IIT Kanpur

Research on Atomicity

Cormac Flanagan
https://users.soe.ucsc.edu/ cormac/atom.html

33

