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Order Violation

Cause: Programmer assumes certain ordering of events

Example:

Thread 2 should not deref. mThread before Thread 1 initializes it
Pattern:

X = 0;
X = 1; t = X ; // 1
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Order Violation

Cause: Programmer assumes certain ordering of (W,R) events

Example:

js_UnpinPinnedAtom should happen after js_MarkAtom.

Pattern:

X = 0;
X = 1; t = X ; // 0
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Order Violation

Cause: Programmer assumes certain ordering of (W,W) events
Example:

Assumption: S1 and S2 execute atomically
Unsafe ordering blocks thread 1

Pattern:

X = 1;
while(X == 1) ; // 0

X = 0;
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Atomicity Violation

Cause: Programmer assumes atomicity of certain code regions
Example:

Assumption: S1;S2 are executed atomically
S2 access NULL value

Pattern:

X = 0;
a = X ;
b = X ;

X = 1;

Desired: a = b = 0 or a = b = 1
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Atomicity Violation

Cause: Programmer assumes atomicity of certain code regions
Example:
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Pattern:
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Multi-Variable Atomicity Bugs

Cause: variables are semantically connected which is violated
Example:

Assumption: mOffset and mLength are updated atomically wrt
thread 1
Lack of synchronization ⇒ thread 1 read inconsistent value

Y = Z = 0;
t = X [Y + Z ]; Y = 1;Z = 1;

Desired: access X [0] or X [2]
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Timing Bugs

Cause: Programmer assumes the tasks would complete within
certain time period

Example:

Assumption: n taks would complete before fatal_timeout

Crash the server
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Fix Strategies

Understand the semantics

Add/modify locks

Add/modify synchronizations

Revisit the examples
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Deadlock

A thread holds a lock and wait for another lock held by another
thread and vice versa

lock(m1);
lock(m2);

. . .

unlock(m2);
unlock(m1);

lock(m2);
lock(m1);

. . .

unlock(m1);
unlock(m2);
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Deadlock: Another Scenario

Another challenge: encapsulation

Vector v1, v2;
v1.AddAll(v2); v2.AddAll(v1);
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Conditions for Deadlock

All conditions must hold:
Mutual exclusion: Threads claim exclusive control of
resources (e.g. lock) that they require.

Hold-and-wait:Threads hold allocated resources while waiting
for additional resources

No preemption: Held resources cannot be forcibly removed
from threads

Circular wait: There exists a circular chain of threads where
each thread holds a resource that are being requested by the
next thread in the chain.
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Deadlock Prevention

Prevent circular wait Programming convention: total ordering on
acquiring lock

Prone to mistakes

Prevent hold-and-wait Acquire all locks at once
Decreases concurrency significantly
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Deadlock Prevention

Prevent no-preemption
Hold locks only when all the locks are available
Challenge: encapsulation prevents the ‘top’ loop implementation

top :
lock(L1);
if(trylock(L2) == −1) {
unlock(L1);
goto top;
}

Problem: Livelock
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Deadlock Prevention

Prevent circular wait Total ordering on acquiring lock
Prone to mistakes

Prevent hold-and-wait Acquire all locks at once
Decreases concurrency significantly

Prevent no-preemption
Problem: Livelock
Challenge: encapsulation prevents the ‘top’ loop
implementation

No mutual-exclusion
Lock free programming
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Deadlock Avoidance

Schedule threads that access same resources

T1 T2 T3 T4
L1 yes yes no no
L2 yes yes yes no
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Deadlock Recovery

Deadlock detector automatically detect deadlock

If deadlock is detected; restart system
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Data Race

Event a and b is in data race if:
a and b are concurrent/in concflict
a and b access same location
At least one of a and b is a write
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Concurrent Accesses

Concurrent: (e1, e2), (e2, e3)

e3 happens-before e1

end(e3)→ start(e1)
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Happens-Before

concurrent/conflict ⇒ Not in happens-before (HB) order

Execution 1: No data race
Execution 2: data race on x
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Data Race Detection

Lockset algorithm

Example:
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