
Concurrency Bugs

Soham Chakraborty

16.02.2022



Outline

Order violation

Atomicity violation

Deadlock

Data race

2



Order Violation

Cause: Programmer assumes certain ordering of events

Example:

Thread 2 should not deref. mThread before Thread 1 initializes it
Pattern:

X = 0;
X = 1; t = X ; // 1

3



Order Violation

Cause: Programmer assumes certain ordering of events
Example:

Thread 2 should not deref. mThread before Thread 1 initializes it

Pattern:

X = 0;
X = 1; t = X ; // 1

3



Order Violation

Cause: Programmer assumes certain ordering of events
Example:

Thread 2 should not deref. mThread before Thread 1 initializes it
Pattern:

X = 0;
X = 1; t = X ; // 1

3



Order Violation

Cause: Programmer assumes certain ordering of (W,R) events

Example:

js_UnpinPinnedAtom should happen after js_MarkAtom.

Pattern:

X = 0;
X = 1; t = X ; // 0

4



Order Violation

Cause: Programmer assumes certain ordering of (W,R) events

Example:

js_UnpinPinnedAtom should happen after js_MarkAtom.

Pattern:

X = 0;
X = 1; t = X ; // 0

4



Order Violation

Cause: Programmer assumes certain ordering of (W,W) events
Example:

Assumption: S1 and S2 execute atomically
Unsafe ordering blocks thread 1

Pattern:

X = 1;
while(X == 1) ; // 0

X = 0;

5



Order Violation

Cause: Programmer assumes certain ordering of (W,W) events
Example:

Assumption: S1 and S2 execute atomically
Unsafe ordering blocks thread 1
Pattern:

X = 1;
while(X == 1) ; // 0

X = 0;

5



Atomicity Violation

Cause: Programmer assumes atomicity of certain code regions
Example:

Assumption: S1;S2 are executed atomically
S2 access NULL value

Pattern:

X = 0;
a = X ;
b = X ;

X = 1;

Desired: a = b = 0 or a = b = 1

6



Atomicity Violation

Cause: Programmer assumes atomicity of certain code regions
Example:

Assumption: S1;S2 are executed atomically
S2 access NULL value
Pattern:

X = 0;
a = X ;
b = X ;

X = 1;

Desired: a = b = 0 or a = b = 1

6



Multi-Variable Atomicity Bugs

Cause: variables are semantically connected which is violated
Example:

Assumption: mOffset and mLength are updated atomically wrt
thread 1
Lack of synchronization ⇒ thread 1 read inconsistent value

Y = Z = 0;
t = X [Y + Z ]; Y = 1;Z = 1;

Desired: access X [0] or X [2]

7



Multi-Variable Atomicity Bugs

Cause: variables are semantically connected which is violated
Example:

Assumption: mOffset and mLength are updated atomically wrt
thread 1
Lack of synchronization ⇒ thread 1 read inconsistent value

Y = Z = 0;
t = X [Y + Z ]; Y = 1;Z = 1;

Desired: access X [0] or X [2]
7



Timing Bugs

Cause: Programmer assumes the tasks would complete within
certain time period

Example:

Assumption: n taks would complete before fatal_timeout

Crash the server

8



Fix Strategies

Understand the semantics

Add/modify locks

Add/modify synchronizations

Revisit the examples

9



Deadlock

A thread holds a lock and wait for another lock held by another
thread and vice versa

lock(m1);
lock(m2);

. . .

unlock(m2);
unlock(m1);

lock(m2);
lock(m1);

. . .

unlock(m1);
unlock(m2);

10



Deadlock: Another Scenario

Another challenge: encapsulation

Vector v1, v2;
v1.AddAll(v2); v2.AddAll(v1);

11



Conditions for Deadlock

All conditions must hold:
Mutual exclusion: Threads claim exclusive control of
resources (e.g. lock) that they require.

Hold-and-wait:Threads hold allocated resources while waiting
for additional resources

No preemption: Held resources cannot be forcibly removed
from threads

Circular wait: There exists a circular chain of threads where
each thread holds a resource that are being requested by the
next thread in the chain.

12



Deadlock Prevention

Prevent circular wait Programming convention: total ordering on
acquiring lock

Prone to mistakes

Prevent hold-and-wait Acquire all locks at once
Decreases concurrency significantly

13



Deadlock Prevention

Prevent no-preemption
Hold locks only when all the locks are available
Challenge: encapsulation prevents the ‘top’ loop implementation

top :
lock(L1);
if(trylock(L2) == −1) {
unlock(L1);
goto top;
}

Problem: Livelock

14



Deadlock Prevention

Prevent no-preemption
Hold locks only when all the locks are available
Challenge: encapsulation prevents the ‘top’ loop implementation

top :
lock(L1);
if(trylock(L2) == −1) {
unlock(L1);
goto top;
}

top :
lock(L2);
if(trylock(L1) == −1) {
unlock(L2);
goto top;
}

Problem: Livelock

14



Deadlock Prevention

Prevent no-preemption
Hold locks only when all the locks are available
Challenge: encapsulation prevents the ‘top’ loop implementation

top :
lock(L1);
if(trylock(L2) == −1) {
unlock(L1);
goto top;
}

top :
lock(L2);
if(trylock(L1) == −1) {
unlock(L2);
goto top;
}

Problem: Livelock

14



Deadlock Prevention

Prevent circular wait Total ordering on acquiring lock
Prone to mistakes

Prevent hold-and-wait Acquire all locks at once
Decreases concurrency significantly

Prevent no-preemption
Problem: Livelock
Challenge: encapsulation prevents the ‘top’ loop
implementation

No mutual-exclusion
Lock free programming

15



Deadlock Avoidance

Schedule threads that access same resources

T1 T2 T3 T4
L1 yes yes no no
L2 yes yes yes no

16



Deadlock Recovery

Deadlock detector automatically detect deadlock

If deadlock is detected; restart system

17



Data Race

Event a and b is in data race if:
a and b are concurrent/in concflict
a and b access same location
At least one of a and b is a write

18



Concurrent Accesses

Concurrent: (e1, e2), (e2, e3)

e3 happens-before e1

end(e3)→ start(e1)

19



Happens-Before

concurrent/conflict ⇒ Not in happens-before (HB) order

Execution 1: No data race
Execution 2: data race on x

20



Data Race Detection

Lockset algorithm

Example:

21



Data Race Detection

Lockset algorithm

Example:

21



References

Learning from Mistakes – A Comprehensive Study on Real World
Concurrency Bug Characteristics.
Shan Lu, Soyeon Park, Eunsoo Seo and Yuanyuan Zhou
ASPLOS 2008.

Common Concurrency Problems (chapter 32)
Operating Systems: Three Easy Pieces
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
https://pages.cs.wisc.edu/ remzi/OSTEP/threads-bugs.pdf

Race Detection Techniques
Christoph von Praun
https://doi.org/10.1007/978-0-387-09766-4_38

Eraser: A Dynamic Data Race Detector for Multithreaded Programs
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
Thomas Anderson. ACM TOCS 1997.

22

https://doi.org/10.1007/978-0-387-09766-4_38

