
CS4405 – Analysis of Concurrent and Distributed Programs

Sequential Consistency
& Linearizability

Burcu Kulahcioglu Ozkan

• In this lecture: Each transaction consists
of a single operation

• In the next lecture, transactions with
atomic visibility of a set of operations

Correctness for concurrent objects

Problem setting (distributed databases):
§ Database consists of objects that can be read/written by transactions

§ An object is defined by the set of operations on it and by the behavior of the object when
these operations are invoked sequentially (sequential specifications*)

§ Clients interact with databases using transactions

§ We capture what happens in a database by a history

§ A history is partial order over the operations of a set of transactions

Burcu Kulahcioglu Ozkan, CS4405

Correctness for concurrent objects

Concurrent accesses to multiple copies of the object

Consistency condition defines which concurrent operation executions are
considered correct

Consistency model is a contract between programmer and replicated system, i.e., it
specifies the consistency between replicas and what can be observed as possible
results of operations.

3

R1

R2

write (x, 1) write (x, 3)

R3

write (x, 2)

read (x, ?)

Sth hidden

Strong consistency models

§ Sequential consistency (SC) (or serializability for transactional
accesses) used in 1970s in the database context

§ Linearizability: Stronger consistency condition (SC + real time
requirements)

Burcu Kulahcioglu Ozkan, CS4405

Next lecture: Weak consistency models

Sequential Consistency (SC)

§ Operations appear to take place in some total order:
§ All servers execute all ops in some identical sequential order
§ The order preserves each client’s own local ordering

Burcu Kulahcioglu Ozkan, CS4405

IEEE, 1979

Sequential Consistency

Burcu Kulahcioglu Ozkan, CS4405

Sequentially consistent

Also sequentially consistent

Not sequentially consistent

R1 write (x, 0)

R2 write (x, 1)

R3

R4 read (x, 0)

read (x, 0)

read (x, 1)

read (x, 1)

Linearizability

§ SC + preserve real-time order
§ All servers execute all ops in some identical sequential order
§ The order preserves each client’s own local ordering
§ The order preserves real-time guarantee

§ Operation calls appear to take effect one at a time, each operation takes effect
between the point at which it is called and when it returns
§ As soon as writes complete successfully, the result is immediately replicated to all nodes

atomically and is made available to reads

Burcu Kulahcioglu Ozkan, CS4405

TOPLAS, 1990

R1

R2

set.insert (1)

set.contains(1): true

R3

Sth hidden

set.isEmpty: false

call return

Linearizability

Burcu Kulahcioglu Ozkan, CS4405

Linearizable Also linearizable

Not
linearizable

Linearizability: Example

Q: Is the execution above linearizable?
A: Yes, there is a total order of operations that conform to their real time order
and satisfy the specification of the data variable x.

10

read (x, 0) read (x, 0) read (x, 1)

read (x, 0) read (x, 1)

write (x, 1)

R1

R2

R3

Linearizability: Example

Q: Is the execution above linearizable?
A: No, in a linearizable system, it is not possible the read operation E to read the value 1.

11

C: read (x, 0) D: read (x,1) E: read (x, 1)

F: read (x, 0) G: read (x, 2)

A: write (x, 1)

R2

R3

R1 B: write (x, 2)

Testing for Linearizability

A concurrent datatype C is linearizable wrt S if every history h of C is linearizable wrt S.

Test setting:

§ Distributed database X claims to provide linearizable consistency
§ Testing database X:

§ Run some client transactions on the database
§ (Optional) Insert network or process faults during the execution
§ Collect execution histories of the test executions (with call and return events)

§ Checking the linearizability of histories:
§ Check each history whether it satisfies linearizability or it violates linearizability
§ E.g., using Knossos linearizability checker

Burcu Kulahcioglu Ozkan, CS4405

Term Project

https://github.com/jepsen-io/knossos

How to check linearizability of histories?

§ Checking linearizability is an NP-complete problem (Gibbons & Korach, 1997)
§ Inherently difficult to implement a checker

§ Automated model checking techniques apply exhaustive state space exploration
§ Beware of state space explosion problem
§ The problem is to find ways of pruning a huge search space: in the worst case, its size is O(N!)

where N is the length of the run of a concurrent system.

Burcu Kulahcioglu Ozkan, CS4405

How to check linearizability of histories?

§ Wing & Gong’s linearizability algorithm

Lowe’s algorithm applies optimizations on top of WG algorithm

an op is minimal if no return is before the call of op,
i.e., it could be linearized first

Testing and Verifying Concurrent Objects. J.M. Wing, C. Gong, C. J. Parallel Distrib. Comput. 1993

Testing for Linearizability. G. Lowe. Concurrency and Computation: Practice and Experience. 2017

How to check linearizability of histories?

§ Knossos linearizability checking tool (used in the Jepsen test system)
§ An implementation of the Wing and Gong linearizability checker, plus Lowe's extensions
§ Used for checking linearizability of many in-production distributed systems
§ Bugs found in several distributed key/value stores

https://github.com/jepsen-io/knossos

Burcu Kulahcioglu Ozkan, CS4405

Some references for further reading

§ Linearizability: A correctness condition for concurrent objects

M. Herlihy, J. M. Wing, ACM Trans. Program. Lang. Syst., 1990

§ Testing and verifying concurrent objects.
J.M. Wing, C. Gong, C. J. Parallel Distrib. Comput. 1993

§ Experience with Model Checking Linearizability.
M. T. Vechev, E. Yahav, G. Yorsh. SPIN 2009

§ Line-up: a complete and automatic linearizability checker.

S. Burckhardt, C. Dern, M. Musuvathi, R. Tan. PLDI 2010.
§ Model Checking of Linearizability of Concurrent List Implementations.

P. Cerný, A. Radhakrishna, D. Zufferey, S. Chaudhuri, R. Alur. CAV 2010.
§ Automatically Proving Linearizability.

V. Vafeiadis. CAV 2010

§ Faster Linearizability Checking via P-Compositionality.
A. Horn, D. Kroening. FORTE 2015.

§ Testing for linearizability
G. Lowe. Concurrency and Computation: Practice and Experience. 2017

Burcu Kulahcioglu Ozkan, CS4405

