
CS4405 – Analysis of Concurrent and Distributed Programs

Concurrency Analysis
for Distributed Systems

Burcu Kulahcioglu Ozkan

Revisit: Events in distributed systems

§ Processes operate on their local memory and communicate by
exchanging messages:
§ A process performs some local computation
§ A process sends a message
§ A process receives a message

Burcu Kulahcioglu Ozkan, CS4405

An example execution

Burcu Kulahcioglu Ozkan, CS4405

Handler

Logger

Terminator

Request

Log Terminate

Flush

Flushed

A simplified version of a bug found in a performance testing tool Gatling [2018]

An example execution

Burcu Kulahcioglu Ozkan, CS4405

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

A simplified version of a bug found in a performance testing tool Gatling [2018]

Model of distributed systems

§ 𝑁𝑜𝑑𝑒𝑠:the set of nodes/processes
§ 𝑀𝑠𝑔𝑠: the set of all messages
§ 𝐸𝑣𝑒𝑛𝑡𝑠: 𝑟𝑒𝑐𝑣, 𝑠𝑒𝑛𝑑,𝑚𝑠𝑔 s.t.

§ 𝑟𝑒𝑐𝑣 ∈ 𝑁𝑜𝑑𝑒𝑠
§ 𝑠𝑒𝑛𝑑 ∈ 𝑁𝑜𝑑𝑒𝑠
§ 𝑚𝑠𝑔 ∈ 𝑀𝑠𝑔𝑠

§ 𝑟𝑒𝑐𝑣 𝑒 , 𝑠𝑒𝑛𝑑 𝑒 ,𝑚𝑠𝑔(𝑒)

Burcu Kulahcioglu Ozkan, CS4405

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

Model of distributed systems

§ A state of the system is a map: c: 𝑁𝑜𝑑𝑒𝑠 → 2!

§ A transition: e = _, _,𝑚𝑠𝑔 ∈ 𝑠(𝑛𝑜𝑑𝑒)

§ Executing the message e = 𝑛𝑜𝑑𝑒, _, _ by can lead to the creation of new events
e" = 𝑛𝑜𝑑𝑒# , 𝑛𝑜𝑑𝑒,𝑚𝑠𝑔#

§ The new state s′ is obtained by removing e from 𝑠(𝑛𝑜𝑑𝑒) and adding e" to
𝑠(𝑛𝑜𝑑𝑒#) for each 𝑖, and we write 𝑠

$%&':'
𝑠′

Burcu Kulahcioglu Ozkan, CS4405

Model of distributed systems

§ An execution is a sequence:

𝑠!
"#$%!:%! 𝑠'

"#$%":%" . . .
"#$%#:%# 𝑠"('

§ The sequence 𝑛𝑜𝑑𝑒!: 𝑒! , . . . 𝑛𝑜𝑑𝑒!: 𝑒!
is called a schedule

Burcu Kulahcioglu Ozkan, CS4405

Handler Logger Terminator
Request

Log

Terminate

Flush

FlushedAn example schedule:
𝐻𝑎𝑛𝑑𝑙𝑒𝑟: 𝑒! = 𝐻𝑎𝑛𝑑𝑙𝑒𝑟, 𝐶𝑙𝑖𝑒𝑛𝑡, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ,
𝐿𝑜𝑔𝑔𝑒𝑟: 𝑒" = 𝐿𝑜𝑔𝑔𝑒𝑟, 𝐻𝑎𝑛𝑑𝑙𝑒𝑟, 𝐿𝑜𝑔 ,

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟: 𝑒# = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟, 𝐿𝑜𝑔𝑔𝑒𝑟, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ,
𝐿𝑜𝑔𝑔𝑒𝑟: 𝑒$ = 𝐿𝑜𝑔𝑔𝑒𝑟, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟, 𝐹𝑙𝑢𝑠ℎ ,

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟: 𝑒% = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟, 𝐿𝑜𝑔𝑔𝑒𝑟, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

Mazurkiewicz trace theory for concurrent systems

§ A mathematical description of the behavior of concurrent systems
§ Formulated by A. Mazurkiewicz in 1977

§ The linear event schedule is not a faithful representation of a concurrent
system’s behavior
§ Two events a and b may appear adjacent in a schedule, while they are really performed

concurrently within the system
§ Sequential observations, nonsequential causality

Burcu Kulahcioglu Ozkan, CS4405

Concurrent program schemes and their interpretations, A. Mazurkiewicz, 1977
Trace theory, A. Mazurkiewicz, Advanced Course on Petri Nets, 1986
Theory of Traces, I.J. Aalsberg, G. Rozenberg, Theoretical Computer Science, 1988
The book of traces, V. Diekert, G. Rozenberg, 1995

1977

Mazurkiewicz trace theory for concurrent systems

§ Trace theory introduces independence relation 𝐼 between the events:
§ Given the set of events (alphabet) Σ, and 𝑎, 𝑏 ∈ Σ
§ 𝐷 ∈ (Σ×Σ) is a symmetric and reflexive dependence relation
§ 𝐼 ∈ (Σ×Σ) is a symmetric and irreflexive dependence relation
§ 𝐷 ∪ 𝐼 = Σ×Σ and 𝐷 ∩ 𝐼 = ∅

§ Independent events can commute:
§ If 𝑎, 𝑏 ∈ 𝐼 , then the schedules x'𝑎𝑏𝑥) and x'𝑏𝑎𝑥) are equivalent

Burcu Kulahcioglu Ozkan, CS4405

Dependence relation partitions the set
of schedules into equivalence classes
called traces

Traces in distributed systems

§ A schedule induces a partial ordering among events Σ, captured by a binary
dependence relation 𝐷 ⊆ Σ×Σ

§ Dependence Relation: Let 𝑒9 and 𝑒: be respectively the ith and jth events in a
schedule. (𝑒9, 𝑒:) ∈ 𝐷 iff:
§ either (i) ∃k : i ≤ k < j such that recv(𝑒9) = recv(𝑒;) and 𝑒: is transitively causally

dependent on 𝑒; ;
§ or (ii) recv(𝑒9) = recv(𝑒:).

§ Given a schedule, two adjacent events that are independent can be permuted
without changing the behavior of the execution

Burcu Kulahcioglu Ozkan, CS4405

Traces in distributed systems

§ Happens-before relation → for an execution 𝑆 = 𝑒<𝑒=…𝑒> is the smallest relation
on Σ×Σ such that:
§ if 𝑖 ≤ 𝑗 and 𝑒9 is dependent with 𝑒: , then 𝑒9 → 𝑒:
§ → is transitively closed.

§ Race Relation: Two events 𝑒9 and 𝑒: are racy iff:
§ (𝑒9, 𝑒:) ∈ 𝐷
§ 𝑒9 and 𝑒: may be co-enabled.

§ Reordering the execution of racy events may result in different program behaviors

Burcu Kulahcioglu Ozkan, CS4405

Exercise: Revisit the example

§ Dependent/independent events
§ Example schedules
§ Traces
§ Racy events

Burcu Kulahcioglu Ozkan, CS4405

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

Order violations

§ Racy events may cause order violations or atomicity violations

Handler Logger Terminator
Request

Log Terminate

Flush

Flushed

Burcu Kulahcioglu Ozkan, CS4405

Log

Order violations https://issues.apache.org/jira/browse/MAPREDUCE-3274

𝐵 sends to 𝐶 a task-init message (𝑏𝑐&'&()
Soon afterwards, 𝐴 sends to 𝐶 a task-kill preemption message (𝑎𝑐)&**)
However, 𝑎𝑐)&** arrives before 𝑏𝑐&'&(and thus is incorrectly ignored by 𝐶
The bug would not manifest if 𝑎𝑐)&** arrives after 𝑏𝑐&'&(

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016.

Atomicity violations

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016.

When 𝐵 is in the middle of a commit transaction, transferring task output data 𝑏𝑐 to 𝐶,
𝐴 sends a kill preemption message 𝑎𝑏 to 𝐵, preempting the task without resetting commit states on 𝐶.

The system is never able to finish the commit.
Then 𝐵 later reruns the task and tries to commit to 𝐶 with 𝑏𝑐’, 𝐶 throws a double-commit exception.
This failure would not happen if the kill message a𝑏 comes before or after the commit transaction 𝑏𝑐.

A B C

https://issues.apache.org/jira/browse/MAPREDUCE-5009

𝐴 is sending a task’s output 𝑎𝑏 to 𝐵 but 𝐴 crashes in the middle, leaving the output half-sent.
The system is unable to recover from this untimely crash
𝐵 detects the fault and reruns the task at 𝐶 (via 𝑏𝑐) and later when 𝐶 re-sends the output 𝑐𝑏, 𝐵
throws an exception.
This bug would not manifest, if the crash happens before/after the output transfer 𝑎𝑏.

A B C

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016.

https://issues.apache.org/jira/browse/MAPREDUCE-3858Fault tolerance bugs: Process crash

𝐴 sends a job 𝑎𝑏 to 𝐵. While 𝐵 is processing, 𝐴 crashes and reboots losing its in-memory job info.
𝐵 sends a job-commit message 𝑏𝑎 but 𝐴 throws an exception because it does not have the job info.
The bug would not manifest if 𝐴 reboots later: if 𝐴 is still down when 𝐵 sends 𝑏𝑎 commit message, 𝐵 will
realize the crash and cancel the job before 𝐴 reboots. 𝐴 would repeat the job correctly.

A B C

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016.

https://issues.apache.org/jira/browse/MAPREDUCE-3186Fault tolerance bugs: Process crash & recovery

Concurrency bugs in distributed systems

§ Reported summary of 104 distributed concurrency bugs from four cloud-scale datacenter
distributed systems, Cassandra, Hadoop MapReduce, Hbase and ZooKeeper.

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016.

Distributed fault tolerance + shared memory bug

CrashTuner: detecting crash-recovery bugs in cloud systems via meta-info analysis.
J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Yang, L. You. SOSP 2019.

https://issues.apache.org/jira/browse/YARN-5918

Two nodes are involved: ResourceManager (𝑅𝑀) at node0 and the NodeManager (𝑁𝑀) at node1.
1. 𝑁𝑀 @node1 sends heartbeat message to 𝑅𝑀 @node0 when it is alive. After node1 crashes, no heartbeat

message will be sent.
2. The liveMonitor thread in node0 detects the crash of node1 after a timeout period. A LOST event is

dispatched to the recovery thread.
3. The recovery thread removes node1 from nodes, a shared data structure to record all available nodes.
4. Another running thread job tries to get resources of 𝑁𝑀 @node1.

Large-scale distributed system bugs in the wild

Burcu Kulahcioglu Ozkan, CS4405

Concurrency bugs in large-scale systems are difficult to detect

Subtle execution scenarios with interleavings of many events, node crashes, network partitions

Burcu Kulahcioglu Ozkan, CS4405

Take aways

§ Distributed systems are notoriously hard to design
and implement correctly
§ Complex interaction between concurrent components
§ Requires reasoning about concurrency and fault

tolerance

§ We need software analysis methods to verify
correctness or detect errors
§ Concurrency analysis of distributed system events and

failures

Image source: https://memegenerator.net/

More at the last lecture “active research directions” J

Burcu Kulahcioglu Ozkan, CS4405

