Concurrency Analysis
for Distributed Systems

CS4405 — Analysis of Concurrent and Distributed Programs

Burcu Kulahcioglu Ozkan

]
TUDelft

Revisit: Events in distributed systems

" Processes operate on their local memory and communicate by
exchanging messages:

= A process performs some local computation 2 @ 2
= A process sends a message / \@;

= A process receives a message E% B P E%

Burcu Kulahcioglu Ozkan, CS4405

An example execution

Request

Handler >

Logger

Log Terminate

Flush

Flushe

Terminator

A simplified version of a bug found in a performance testing tool Gatling [2018]

Burcu Kulahcioglu Ozkan, CS4405

An example execution

Handler Logger Terminator
Request
. Log
Terminate
Flush
Flushed

A simplified version of a bug found in a performance testing tool Gatling [2018]

Burcu Kulahcioglu Ozkan, CS4405

Model of distributed systems

= Nodes:the set of nodes/processes Handler Logger Terminator
Request
" Msgs: the set of all messages Ak AL Log
= Events: (recv, send, msg) s.t. ' ,
Terminate

= recv € Nodes >

= send € Nodes Flush

= msg € Msgs)

= recv (e),send(e), msg(e)

Burcu Kulahcioglu Ozkan, CS4405

Flushed

Model of distributed systems

= A state of the system is a map: c: Nodes — 2*

= Atransition: e = (,_,msg) € s(node)

= Executing the message e = (node,_,) by can lead to the creation of new events
e; = (node;,node, msg;)

= The new state s’ is obtained by removing e from s(node) and adding e; to
node:e

s(node;) for each i, and we write s —— s’

Burcu Kulahcioglu Ozkan, CS4405

Model of distributed systems

= An execution is a sequence: Handler Logger Terminator
nodeg:eg nodeq:eq noden:en Request
SO)Sl > T STl+1 — Log
= The sequence (nodeg: €p),...{nodey: ey) Terminate
is called a schedule Flush
An example schedule:

(Handler: eo = (Handler, Client, Request)),
(Logger: e, = (Logger, Handler, Log)),
(Terminator: e, = (Terminator, Logger, Terminate)),
(Logger: e; = (Logger, Terminator, Flush)),
(Terminator: e, = (Terminator, Logger, F lushed))

Burcu Kulahcioglu Ozkan, CS4405

Flushed

Mazurkiewicz trace theory for concurrent systems

= A mathematical description of the behavior of concurrent systems
= Formulated by A. Mazurkiewicz in 1977

= The linear event schedule is not a faithful representation of a concurrent

system’s behavior
= Two events a and b may appear adjacent in a schedule, while they are really performed
concurrently within the system

= Sequential observations, nonsequential causality

Trace theory, A. Mazurkiewicz, Advanced Course on Petri Nets, 1986
Theory of Traces, I.J. Aalsberg, G. Rozenberg, Theoretical Computer Science, 1988
The book of traces, V. Diekert, G. Rozenberg, 1995

Burcu Kulahcioglu Ozkan, CS4405 4

‘ Concurrent program schemes and their interpretations, A. Mazurkiewicz, 1977

Mazurkiewicz trace theory for concurrent systems

= Trace theory introduces independence relation I between the events:
= Given the set of events (alphabet) ¥, anda,b € X
= D € (ZXX) is a symmetric and reflexive dependence relation

= | € (¥XX) is a symmetric and irreflexive dependence relation
= DUl =ZXXandDNI =0

= Independent events can commute:
= |If (a,b) € I, then the schedules x;abx, and x{bax, are equivalent

Dependence relation partitions the set A
of schedules into equivalence classes —

called traces m

Burcu Kulahcioglu Ozkan, CS4405

Traces in distributed systems

= A schedule induces a partial ordering among events X, captured by a binary
dependence relation D € XXX

= Dependence Relation: Let e; and e; be respectively the ith and jth events in a
schedule. (e;, ej) € D iff:

= either (i) 3k : i < k <jsuch that recv(e;) = recv(ey) and e; is transitively causally
dependent on ey, ;

= or (ii) recv(e;) = recv(ej).

= Given a schedule, two adjacent events that are independent can be permuted
without changing the behavior of the execution

Burcu Kulahcioglu Ozkan, CS4405

Traces in distributed systems

" Happens-before relation — for an execution S = eqe, ... e, is the smallest relation
on XXX such that:

= if i < jande; is dependent with e; , then e; — e;
= — js transitively closed.

" Race Relation: Two events e; and e; are racy iff:
= (el-, e]) eED
= ¢; and e; may be co-enabled.

= Reordering the execution of racy events may result in different program behaviors

Burcu Kulahcioglu Ozkan, CS4405 4

O
P

= Dependent/independent events

= Example schedules
= Traces

= Racy events

oo Exercise: Revisit the example

Handler Logger Terminator
Request
—_—
Log
Terminate‘
Flush

Burcu Kulahcioglu Ozkan, CS4405

Flushed

Order violations

= Racy events may cause order violations or atomicity violations

Handler Logger Terminator

Request
\og Terminate

—_—
Flush

ﬂﬁ Flushed)

Burcu Kulahcioglu Ozkan, CS4405

@ Hadoop Map/Reduce / MAPREDUCE-3274

Race condition in MR App Master Preemtion can cause a dead lock

O rd e r Vl O | at I O n S https://issues.apache.org/jira/browse/MAPREDUCE-3274

(b)

B sends to C a task-init message (bcinit)

Soon afterwards, A sends to C a task-kill preemption message (acy;;;)
However, acy;;; arrives before bci,;; and thus is incorrectly ignored by C
The bug would not manifest if acy;;; arrives after byt

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016. 4

@ Hadoop Map/Reduce / MAPREDUCE-5009

Killing the Task Attempt slated for commit does not clear the
value from the Task commitAttempt member

Ato m I C l ty VI O | at l O n S https://issues.apache.org/jira/browse/MAPREDUCE-5009

When B is in the middle of a commit transaction, transferring task output data bc to C,

A sends a kill preemption message ab to B, preempting the task without resetting commit states on C.
The system is never able to finish the commit.

Then B later reruns the task and tries to commit to C with bc’, C throws a double-commit exception.
This failure would not happen if the kill message ab comes before or after the commit transaction bc.

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016. 4

@ Hadoop Map/Reduce / MAPREDUCE-3858

Task attempt failure during commit results in task never completing

Fa U |t to | erance b U gS P rocess cras h https://issues.apache.org/jira/browse/MAPREDUCE-3858

A is sending a task’s output ab to B but A crashes in the middle, leaving the output half-sent.
The system is unable to recover from this untimely crash

B detects the fault and reruns the task at C (via bc) and later when C re-sends the output cb, B
throws an exception.

This bug would not manifest, if the crash happens before/after the output transfer ab.

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016. 4

@ Hadoop Map/Reduce / MAPREDUCE-3186

User jobs are getting hanged if the Resource manager process
goes down and comes up while job is getting executed.

Fa U |t to | e ra N Ce b U gS : P rOC@SS C ra S h & re Cove ry https://issues.apache.org/jira/browse/MAPREDUCE-3186

A sends a job ab to B. While B is processing, A crashes and reboots losing its in-memory job info.

B sends a job-commit message ba but A throws an exception because it does not have the job info.

The bug would not manifest if A reboots later: if A is still down when B sends ba commit message, B will
realize the crash and cancel the job before A reboots. A would repeat the job correctly.

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016. 4

Concurrency bugs in distributed systems

= Reported summary of 104 distributed concurrency bugs from four cloud-scale datacenter
distributed systems, Cassandra, Hadoop MapReduce, Hbase and ZooKeeper.

Ordering Atomicity Fault Reboot

CA 4 - 6 5
HB 13 9 8 1
MR 25 - 5 3
ZK 4 8 7 5
All 46 25 26 14

Table 2. #DC bugs triggered by timing conditions (§3.1).
The total is more than 104 because some bugs require more than
one triggering condition. More specifically, 46 bugs (44%) are
caused only by ordering violations, 21 bugs (20%) only by atom-
icity violations, and 4 bugs (4%) by multiple timing conditions (as
also shown in Figure 3a).

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems.
T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi. ASPLOS 2016. 4

. Hadoop YARN / YARN-5918
@ Handle Opportunistic scheduling allocate request
failure when NM is lost
https://issues.apache.org/jira/browse/YARN-5918

Distributed fault tolerance + shared memory bug

RM@node0 NM

@nodel
job recovery liveMonitor; @

Runtime
Meta-info

nmeout

2%)
0, 3
void covertToNode(id){ g

2 node = nodes.get(id)

3 node.getHttpAddress();
4}

Two nodes are involved: ResourceManager (RM) at nodeO and the NodeManager (NM) at nodel.

1. NM @nodel sends heartbeat message to RM @node0 when it is alive. After nodel crashes, no heartbeat
message will be sent.

2. The liveMonitor thread in nodeO detects the crash of nodel after a timeout period. A LOST event is
dispatched to the recovery thread.

3. The recovery thread removes nodel from nodes, a shared data structure to record all available nodes.

4. Another running thread job tries to get resources of NM @nodel.

CrashTuner: detecting crash-recovery bugs in cloud systems via meta-info analysis. 4
J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Yang, L. You. SOSP 2019.

Large-scale distributed system bugs in the wild

@ Hadoop HDFS / HDFS-4404
Create file failure when the machine of first atter

Solr / SOLR-1144
Cassandra / CASSANDRA-9794 "’{)4 . .
oF - L . = replication hang
Linearizable consistency for lightweight transactions is not achieved o ges
Kafka / KAFKA-382 N ActiveMQ / AMQ-6911
Write ordering guarantee Violated K88 Constraint violation on failover (Postgresql)
M ActiveMQ / AMQ-2780 Core Server / SERVER-37948

Linearizable read concern is not satisfied by getMores on a

K88 ActiveMQ not preserving Message Order cursor

HBase / HBASE-2849

Core Sorver | SERVER.38084 emse HBase clients cannot recover

MongoDB hangs when a part of a replica set

"W ZooKeeper / ZOOKEEPER-4003

K8 Zookeeper server breakdown Frequently

Burcu Kulahcioglu Ozkan, CS4405 4

Concurrency bugs in large-scale systems are difficult to detect

Subtle execution scenarios with interleavings of many events, node crashes, network partitions

o ——— — L
Race condition in MR App Master Preemtion ca e / CASSANDRA-6023
ZooKeeper / ZOOKEEPER-2832 ¥ CAS should disti 5k ise d b
. Data Inconsistency occurs if follower has uncommitted tr should distinguish promised and accepted ballots
the leader that has the lower last processed zxid

There appears Inthe n et

previous TA_KILL event appears to have besn grered.

Freoes v Details

v Details

s o Type: Dsug Status:
Type: Bug Status: [open |

Al Comments Worklog Mistory Activey Trasitions & a B 3

e Priority: 2 Major Resolution: Unresolved Priority: < Normal Resolution: Fixed
C ST eSS T e] Affects Version/s: 349 Fix Verslon/s: 3410 Component/s: Feature/Lightweight Transactions Fix Version/s: 2.01
O ot s v s s commen - 250en 2058 Mo vt seers oy aree oo e Labels: LWT
~ O Robet Joseph Evans added a comment - 26/0cyT1 2145 Labels: None Severity: Normal
OK 50 1 15 arace condition. .
attampe_1319342304842_1065_n 03040 0 Lx Lauoched (FINTR BMSTSO) Since Version: 2.0.0
el ing tiiins 5 o s capcicy v Description
- Synchronization code may fail to truncate an uncommitted transaction in the follower’s transaction log. Here is a scenaricy

Initial condition: ’v Descrlptlon
Start the ensemble with three nodes A, B and C with C being the leader Currently, we only keep 1) the most recent promise we've made and 2) the last update we've accepted. But we don't keep the ballot at which
The current epoch s 1 that last update was accepted. And because a node always promise to newer ballot, this means an already committed update can be replayed

24219403 _caes

For simplicity of the example, let's say zxid is a two digit number, with epoch being the first digit

50 even though attempn_1318242394842_0065_r_DOOC0S_O was kiled, s container when 1t Create two znodes ‘key0’ and ‘key1’ whose value is ‘0’ and ‘1, respectively

B © i s ki comin = 27/0éAY G758 35 VAR RN I P G [Thh:;:": :f li;;;s")” creating key0 and 12 for creating key1. (For simplicity of the example, the zxid gets increased only f} - oo oretely, we can have the following case (with 3 nodes A, B and C) with the current implementation:
3) Robest Josesh Evans added a comment - 27/0y11 1324 You are corect, | et contused ot All the nodes have seen the change 12 and have persistently logged it

even after another update has been committed. Re-committing a value is fine, but only as long as we've not start a new round yet.

A proposer P1 prepare and propose a value X at ballot t1. It is accepted by all nodes.

Shut down all
O R B e g W * A proposer P2 propose at t2 (wanting to commit a new value Y). If say A and B receive the commit of P1 before the propose of P2 but C
y | .\ Step1 : : .
> € Vinca Kumar Vaviapal added a comment - 27/0c/T1 1458 But cn the N they were proc)) i I r we' r I s
Start Node A and B. Epoch becomes 2. Then, a request, setData(key0, 1000), with zxid 21 is issued. The leader B writes receives those in the reverse order, we'll current have the fol Iowmg L
5@ Robert Josaphs Rvans added s comment = 270011 16512 shutdown before writing it to the log. Then, the leader B is also shut down. The change 21is applied only to B but not to
Of Course. A: in-progress = (t2, _), mrc = (tl, X)
. Step 2 B: in-progress = (t2, _), mrc = (tl, X)
Start Node A and C. Epoch becomes 3. Node A has the higher zxid than Node C (i.e. 20 > 12). So, Node A becomes the I C: in-progress = (t2, X), mrc = (tl, X)
is 12 for both Node A and C. So, they are in sync already. Node A sends an empty DIFF to Node C. Node C takes a snapsh
Then, A and C are shut down. Now, C has the higher zxid than Node B. ¥ = pico 3 2 x . N
9 Because C has received the t1 commit after promising t2, it won't have removed X during t1 commit (but note that the problem is not N

step 3 during commit, that example still stand if C never receive any commit message).
Start Node B and C. Epoch becomes 4. Node C has the higher zxid than Node B (i.e. 30 > 21). So, Node C becomes the |
different last processed zxid (i.e. 21 vs 12), and the LinkedList object ‘proposals’ is empty. Thus, Node C sends SNAP to x %
snapshot and creates snapshot.12 as the zxid 12 is the last processed zxid of the leader C. (Note the newly created snap; at least). A and B accepts, P2 will send a commit for Y.
1:"’ ‘“e“:“’ ‘;"é’;’ge 21;" the '°5|3)' Then, the ’:q“?"T :‘e!Da‘;a(k:y(‘:l, 1°°1r’1r W:" 2zxid 411s issued. Both B and C apply the In the meantime a proposer P3 submit a prepare at t3 (for some other irrelevant value) which reaches C before it receives P2
that now B an ave the same last processed zxit ien, B an are shut down. " . . o

B) propose&commit. That prepare reaches A and B too, but after the P2 commit. At that point the state will be:

Now, based on the promise of A and B, P2 will propose Y at t2 (C don't see this propose in particular, not before he promise on t3 below

Step 4

Start Node B and C. Epoch becomes 5. Node B and C use their local log and snapshot files to restore their in-memory da A: in-progress = (t3, _), mrc = (t2, Y)

value of key0, because it's latest valid snapshot is snapshot.12 and there was a later transaction with zxid 21 in its log. Ye B: in-progress = (t3, _), mrc = (t2, Y)
B Y R M e key0, because the change 21 was never written on C. Node C is the leader. Node B and C have the same last processed C: in-progress = (t3, X), mrc = (t2, Y)

Seikoge for comLL (Bervihed 00 considered to be in sync already, and Node C sends an empty DIFF to Node B. So, the synchronization completes with th|

data tree on B and C.

In particular, C still has X as update because each time it got a commit, it has promised to a more recent ballot and thus skipped the

Problem delete. The value is still X because it has received the P2 propose after having promised t3 and has thus refused it.

The value of keyO on B is 1000, while the value of the keyO on Node C is 0. The LearnerHandler.run on C at Step 3, neve! P3 back th A ¢ C and A. Both h 3 F ball diti h butC
the change 21 was never truncated on B. Also, at step 4, since B uses the snapshot of the lower zxid to restore its in-me| gets back the promise of say C an - Both response has t3 as in-progress ballot (and it is more recent than any mrc) but C comes

could get into the data tree. Then, the leader C at the step 4 did not send SNAP, because the change 41 made to both Bl with value X. So P3 will replay X. Assuming no more contention this replay will succeed and X will be committed at t3.

At the end of that example, we've comitted X, Y and then X again, even though only P1 has ever proposed X.

B K | }' | believe the correct fix is to keep the ballot of when an update is accepted (instead of using the most recent promised ballot). That way, in the
urcu Kula example above, P3 would receive from C a promise on t3, but would know that X was accepted at t1. And so P3 would be able to ignore X since
the mrc of A will tell him it's an obsolete value.

Take aways

DISTRIBUTED.SYSTEMS = Distributed systems are notoriously hard to design

and implement correctly
= Complex interaction between concurrent components

= Requires reasoning about concurrency and fault
tolerance

= \We need software analysis methods to verify
correctness or detect errors

YOU = Concurrency analysis of distributed system events and
; failures

{

SCAREDYOU wuﬁ%in
TOMUST.

Image source: https://memegenerator.net/

nemedenera tor.net

More at the last lecture “active research directions” ©

Burcu Kulahcioglu Ozkan, CS4405 ‘ ?‘

