
CS4405 – Analysis of Concurrent and Distributed Programs

Time and Order in Distributed Systems

Burcu Kulahcioglu Ozkan

Events in distributed systems

§ Processes operate on their local memory and communicate by
exchanging messages:
§ A process performs some local computation
§ A process sends a message
§ A process receives a message

Burcu Kulahcioglu Ozkan, CS4405

Time and order of events in distributed systems

Why do we need to order the events?
§ Encoding history (“happens before” relationships)
§ Transactions in a database
§ Consistency of distributed data
§ Debugging (finding the root cause of a bug)
§ . . .

Burcu Kulahcioglu Ozkan, CS4405

Reminder: Partial vs Total order

Strict partial order:
§ Irreflexivity: ∀𝑎.¬𝑎 < 𝑎 (items not comparable with self)
§ Transitivity: if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 then 𝑎 ≤ 𝑐
§ Antisymmetry: if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏

Strict total order:
§ An additional property: ∀𝑎, 𝑏, 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎 ∨ 𝑎 = 𝑏

4

Time in centralized vs distributed systems

§ Centralized systems: System calls to kernel, monotonically increasing time values.

§ Distributed systems: Achieving agreement on time is not trivial!

Burcu Kulahcioglu Ozkan, CS4405

Logical time

§ Idea: Instead of using the precise clock time, capture the
events relationship between a pair of events

§ Based on causality: If some event possibly causes another
event, then the first event happened-before the other

Burcu Kulahcioglu Ozkan, CS4405

CACM, 1978

Happens-before relation between events

Happens-before relation captures dependencies between events:
§ If 𝑎 and 𝑏 are events in the same node, and 𝑎 occurs before 𝑏, then 𝑎 → 𝑏
§ If 𝑎 is the event of sending a message and 𝑏 is the event of receiving that message,

then 𝑎 → 𝑏
§ The relation is transitive.

It is a strict partial order: it is irreflexive, antisymmetric and transitive.

Two events not related to happened-before are concurrent.

Burcu Kulahcioglu Ozkan, CS4405

Lamport timestamps

Lamport introduced the eponymous logical timestamps in 1978:
§ Each individual process 𝑝 maintains a counter: 𝐿𝑇(𝑝).
§ When a process 𝑝 performs an action, it increments 𝐿𝑇(𝑝).
§ When a process 𝑝 sends a message, it includes 𝐿𝑇(𝑝) in the message.
§ When a process 𝑝 receives a message from a process 𝑞, that message includes the value of
𝐿𝑇(𝑞); 𝑝 updates its 𝐿𝑇(𝑝) to the max(𝐿𝑇(𝑝), 𝐿𝑇(𝑞)) + 1

For two events 𝑎 and 𝑏, if 𝑎 → 𝑏, then 𝐿𝑇(𝑎) < 𝐿𝑇(𝑏).

8Burcu Kulahcioglu Ozkan, CS4405

Lamport timestamps

For two events 𝑎 and 𝑏, if 𝑎 → 𝑏, then 𝐿𝑇(𝑎) < 𝐿𝑇(𝑏).

If 𝐿𝑇(𝑎) < 𝐿𝑇(𝑏), then it does not mean that 𝑎 → 𝑏.

Why?

9Burcu Kulahcioglu Ozkan, CS4405

Why is the LT invariant not symmetric?

Another example scenario with 4 nodes that exchange events:
Initial state of timestamps: [𝐴(0), 𝐵(0), 𝐶(0), 𝐷(0)]

E1. 𝐴 sends to 𝐶: [𝐴(1), 𝐵(0), 𝐶(0), 𝐷(0)]
E2. 𝐶 receives from 𝐴: [𝐴(1), 𝐵(0), 𝐶(2), 𝐷(0)]
E3. 𝐶 sends to 𝐴: [𝐴(1), 𝐵(0), 𝐶(3), 𝐷(0)]
E4. 𝐴 receives from 𝐶: [𝐴(4), 𝐵(0), 𝐶(3), 𝐷(0)]
E5. 𝐵 sends to 𝐷: [𝐴(4), 𝐵(1), 𝐶(3), 𝐷(0)]
E6. 𝐷 receives from 𝐵: [𝐴(4), 𝐵(1), 𝐶(3), 𝐷(2)]

At this point, 𝐿𝑇(𝐸6) < 𝐿𝑇(𝐸4), but it does not mean that 𝐸6 → 𝐸4!
Events 4 and 6 are independent.

10

Vector Clocks

Vector clocks can maintain causal order.
On a system with 𝑁 nodes, each node 𝑖 maintains a vector 𝑉! of size 𝑁.

§ 𝑉![𝑖] is the number of events that occurred at node 𝑖
§ 𝑉![𝑗] is the number of events that node 𝑖 knows occurred at node 𝑗

All nodes vector clocks start at [0, …, 0]
They are updated as follows:

§ Local events increment 𝑉![𝑖]
§ When 𝑖 sends a message to 𝑗, it includes 𝑉!
§ When 𝑗 receives 𝑉!, it updates all elements of 𝑉" to 𝑉"[𝑎] = max(𝑉![𝑎], 𝑉"[𝑎])

Burcu Kulahcioglu Ozkan, CS4405

Vector clocks

Burcu Kulahcioglu Ozkan, CS4405

Initial state of timestamps: [𝐴(0, 0, 0, 0), 𝐵(0, 0, 0, 0), 𝐶(0, 0, 0, 0), 𝐷(0, 0, 0, 0)]
E1. 𝐴 sends to 𝐶: [𝐴(1, 0 0 0), 𝐵(0, 0, 0, 0), 𝐶(0, 0, 0, 0), 𝐷(0, 0, 0, 0)]
E2. 𝐶 receives from 𝐴:[𝐴(1, 0 0 0), 𝐵(0, 0, 0, 0), 𝐶(1, 0, 1, 0), 𝐷(0, 0, 0, 0)]
E3. 𝐶 sends to 𝐴:[𝐴(1, 0 0 0), 𝐵(0, 0, 0, 0), 𝐶(1, 0, 2, 0), 𝐷(0, 0, 0, 0)]
E4. 𝐴 receives from 𝐶:[𝐴(2, 0 2 0), 𝐵(0, 0, 0, 0), 𝐶(1, 0, 2, 0), 𝐷(0, 0, 0, 0)]
E5. 𝐵 sends to 𝐷: [𝐴(2, 0 2 0), 𝐵(0, 1, 0, 0), 𝐶(1, 0, 2, 0), 𝐷(0, 0, 0, 0)]
E6. 𝐷 receives from 𝐵:[𝐴(2, 0 2 0), 𝐵(0, 1, 0, 0), 𝐶(1, 0, 2, 0), 𝐷(0, 1, 0, 1)]

Vector clock guarantees

§ Comparing vector clocks: Given 𝑉! and 𝑉" :
§ 𝑉! = 𝑉" iff 𝑉![𝑘] = 𝑉"[𝑘] for all 𝑘
§ 𝑉! ≤ 𝑉" iff 𝑉![𝑘] ≤ 𝑉"[𝑘] for all 𝑘
§ (Concurrency) 𝑉! || 𝑉" otherwise

§ For two events 𝑎 and 𝑏 and their vector clocks 𝑉𝐶(𝑎) and 𝑉𝐶(b):
§ if 𝑎 → 𝑏, then 𝑉𝐶(𝑎) < 𝑉𝐶(𝑏)
§ if 𝑉𝐶(𝑎) < 𝑉𝐶(𝑏), then 𝑎 → 𝑏

Vector clocks are expensive to maintain: they require 𝑂(𝑛) timestamps to be
exchanged with each communication.
- However, we cannot do better than 𝑂(𝑛)

Burcu Kulahcioglu Ozkan, CS4405

http://www.bailis.org/blog/causality-is-expensive-and-what-to-do-about-it/

Causally dependent events

Why compute causal dependency between events?

Burcu Kulahcioglu Ozkan, CS4405

write comment write comment

comment added comment added

