
CS4405 – Analysis of Concurrent and Distributed Programs

Distributed Decision Making

Burcu Kulahcioglu Ozkan

Distributed decision making

Consensus is a fundamental problem in distributed
systems.

Providing agreement in the presence of process and
network faults:

§ Committing a transaction
§ Synchronizing state machines
§ Leader election
§ Mutually exclusive access to a resource
§ Atomic broadcasts

Burcu Kulahcioglu Ozkan, CS4405

T1: write(X, a)

T2: write(X, b)

T1; T2

T2; T1
❓

The 2-generals problem

§ A thought experiment to illustrate the pitfalls and design challenges of
coordinating an action by communicating over an unreliable link

Can the generals guarantee a synchronized attack?
§ 2 armies camped in opposing hills (A1 and A2)
§ The are only able to communicate with messengers
§ They need to decide on a time to attack
§ Enemy (B) is camped between the two hills and can at any time intercept the messengers

Burcu Kulahcioglu Ozkan, CS4405

SOSP, 1975

The 2-generals problem (cont’d)

§ It is impossible to make a reliable decision
§ Main problem: lack of common knowledge

§ Approximate solutions: Accept the uncertainty of the communication
channel and mitigate it to a sufficient degree
§ Pre-agree on timeouts
§ Send 𝑛 labeled messages
§ Receiver calculates received messages within time window, then decides how

many messages to send for ack.

Burcu Kulahcioglu Ozkan, CS4405

SOSP, 1975

Byzantine Generals problem

§ Formulated by Lamport et al., the Byzantine generals problem shaped distributed
systems research for the next 40 years.
§ Several divisions of the Byzantine army are camped outside an enemy city, each division

commanded by its own general
§ The generals can communicate with each other only by messengers
§ They must decide upon a common plan of action: Attack or Retreat
§ There might be traitors (malicious or arbitrary behavior)

How can loyal generals agree on a plan?

6

TOPLAS, 1982

Byzantine Generals solution: Fault tolerant consensus protocols

With only three Generals no solution can work in the presence of a single traitor

A consensus protocol defines a set of rules for message exchange and processing for
distributed components to reach agreement

Fault tolerant consensus, e.g.,:
§ PBFT - Byzantine fault tolerant consensus with at least 3f+1 nodes with f traitors
§ Paxos, Raft - Crash fault tolerant consensus with at least 2f+1 nodes with f faulty nodes

§ Once a majority agrees on a value, that is consensus

7

Consensus protocols/algorithms

Given a set of processes each with an initial value, consensus requires:
§ Termination: All non-faulty processes eventually decide on a value
§ Integrity: No correct process decides twice
§ Validity: The value that has been decided must have proposed by some (correct) process
§ Agreement: No two (correct) processes decide differently

Burcu Kulahcioglu Ozkan, CS4405

FLP Impossibility Result

§ “It is impossible to have a deterministic consensus
algorithm that can satisfy agreement, validity,
termination, and fault tolerance (of even a single
process) in an asynchronous distributed system.”

Burcu Kulahcioglu Ozkan, CS4405

JACM, 1985

§ States that in an asynchronous system there is no algorithm
that solves consensus in every possible run
§ For any protocol, there exists a configuration that is always bivalent (undecided)
§ The heart of the FLP result is the impossibility to distinguish slow vs crashed processes

§ Consensus protocols in practice use randomization and partial synchrony (e.g., “failure
detectors”)

Paxos consensus algorithm

§ Proposed by Lamport in 1989

§ Consensus in the existence of process crashes or network faults
§ Tolerates f crash faults in an execution with 2f+1

§ Consensus is reached once majority agrees on a proposal

§ Safety – always safe

§ Liveness – very often live
§ Some value eventually chosen if fewer than half of processes fail
§ Conditions to prevent progress is extremely unlikely

Burcu Kulahcioglu Ozkan, CS4405

ACM Trans. Comput. Syst,1998

Paxos algorithm: Process roles

§ Three roles:
§ Proposer: Chooses a value (or receives from a client) and sends it to a set of

acceptors to collect votes
§ Acceptor: Vote to accept or reject the values proposed by the proposer. For

fault tolerance, the algorithm requires only a majority of acceptor votes
§ Learner: They adopt the value when a large enough number of acceptors have

accepted it.
§ A process can play any/all roles
§ Every proposal <n, v> consists of a value, proposed by the client, and a unique

monotonically increasing proposal number n, aka “ballot” number
§ Acceptance of the proposals by a majority of processes/servers provide fault

tolerance.

Burcu Kulahcioglu Ozkan, CS4405

Paxos consensus algorithm - Voting

Phase1 (Voting)
§ (Prepare)A proposer selects a proposal number (ballot) n and sends a “prepare” request Prepare(n) to acceptors.

§ (Promise) If n is higher than every previous proposal number received, then the Acceptor returns "Promise", to the
Proposer, to ignore all future proposals having a number less than n.

If the Acceptor accepted a proposal at some point in the past, it must include the previous proposal number,
say m, and the corresponding accepted value, say w, in its response to the Proposer.

12

Proposer

Acceptor1

Propose

Acceptor2

Acceptor3

Acceptor4

proposal 1? “OK” “OK”value v?

Promise Accept Accepted

wait for
majority

wait for
majority

Burcu Kulahcioglu Ozkan, CS4405

Paxos consensus algorithm - Replication

Phase2 (Replication)
§ (Accept) If the proposer receives a response from a majority of acceptors, then it sends an accept request for

a proposal numbered n with the highest-numbered proposal among the responses.

§ (Accepted) If an acceptor receives an accept request for a proposal numbered n, it accepts the proposal
unless it has already responded to a prepare request having a number greater or equal than the proposal
number.

13

Proposer

Acceptor1

Propose

Acceptor2

Acceptor3

Acceptor4

proposal 1? “OK” “OK”value v?

Promise Accept Accepted

wait for
majority

wait for
majority

Burcu Kulahcioglu Ozkan, CS4405

Raft consensus algorithm

§ Leader-based asymmetric model: A node in a system can only be in one of the
three states at any point in time:
§ Leader, follower, or candidate

§ Separates leader election and log replication states:

Burcu Kulahcioglu Ozkan, CS4405

USENIX, 2014

Raft consensus algorithm - Cluster states

Leader election
§ Select one server to act as leader
§ Detect crashes, choose new leader

§ Log replication (normal operation)
§ Leader accepts commands from clients, appends to its log
§ Leader replicates its log to other servers (overwrites inconsistencies)

Raft ensures that: logs are always consistent and that only servers with up-to-date
logs can become leader

16“Raft: In search for an understandable consensus algorithm”, D. Ongaro and J. Ousterhout. USENIX’14

Raft - Leader election

Raft defines the following server states:

§ Candidate: Candidate for being a leader, asking for votes

§ Leader: Accepts log entries from clients, replicates them on
other servers

§ Follower: Replicate the leader’s state machine

Each server maintains current term value (no global view):

§ Exchanged in every RPC

§ Peer has later term? Update term, revert to follower

Raft selects at most one leader at each term. For some terms,
the election may fail and result in no leader for that term.

17

The leader for any given term contains all of the entries committed in previous terms

“Raft: In search for an understandable consensus algorithm”, D. Ongaro and J. Ousterhout. USENIX’14

Raft – Log replication

§ The leader accepts log entries from clients and replicates them across the servers:
§ Each log entry also has an integer index identifying its position in the log.
§ The leader sends AppendEntries message to append an entry to the log
§ A log entry is committed once the leader that created the entry has replicated it on

a majority of the servers.

18“Raft: In search for an understandable consensus algorithm”, D. Ongaro and J. Ousterhout. USENIX’14

Raft – Inconsistent states due to crashes

§ During normal operation, the logs of the
leader and followers stay consistent.

§ However, leader crashes can leave the logs
inconsistent (the old leader may not have
fully replicated all of the entries in its log).

§ These inconsistencies can compound over
a series of leader and follower crashes.

“Raft: In search for an understandable consensus algorithm”, D. Ongaro and J. Ousterhout. USENIX’14

Raft visualization

https://raft.github.io/

