
Analysis of Concurrent and Distributed Programs

Burcu Kulahcioglu Ozkan and Soham Chakraborty

09.02.2022



Outline

(1) Introduction
Course logistics & assessment (Link)
Lecture content (Link)
Course projects (Link)

Overview of concurrency
Paradigms
Concepts

Interactions

2

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=60097
https://cs4405.github.io
https://cs4405.github.io


Concurrent Programming: Paradigms

Multiple computations that may/may not influences one another

Parallelism (SIMD, MIMD, . . .)
Independent computation on multiple threads/processes on
independent data

Distributed computing
Independent computation on multiple machines with message
passing

Asynchronous programmming
Multiple tasks on single/multiple threads that may share
memory
Event driven systems

Shared memory concurrency
Multiple threads that communicate by shared memory

3



Concurrent Programming: Motivation

Pros

+ Concurrency improves performance

Cons

- Concurrent programming is hard

- May result in tricky bugs in programs

Requires careful analysis

This course !

4



Concurrent Programming: Motivation

Pros

+ Concurrency improves performance

Cons

- Concurrent programming is hard

- May result in tricky bugs in programs

Requires careful analysis

This course !

4



Example

X = 0;

X = X + 1; X = X + 1;

What is the final value(s) of X?

Expected: X = 2.

5



Example

X = 0;

X = X + 1; X = X + 1;

What is the final value(s) of X?

Expected: X = 2.

5



Example

X = 0;

a = X ;
a = a+ 1;
X = a;

b = X ;
b = b + 1;
X = b;

6



Example: Execution (1)

X = 0;

a = X ; // 0
a = a+ 1;
X = a;

// 1

b = X ;

// 1

b = b + 1;
X = b;

// 2

7



Example: Execution (1)

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ;

// 1

b = b + 1;
X = b;

// 2

7



Example: Execution (1)

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 1
b = b + 1;
X = b;

// 2

7



Example: Execution (1)

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 1
b = b + 1;
X = b; // 2

7



Example: Execution (2)

X = 0;

a = X ; // 0
a = a+ 1;
X = a;

// 1

b = X ; // 0
b = b + 1;
X = b;

// 1

8



Example: Execution (2)

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 0
b = b + 1;
X = b; // 1

8



Example

X = 0;

X = X + 1; X = X + 1;

What is the final value(s) of X?

Expected: X = 2.

Reality: X ∈ {1, 2}

9



Example

X = 0;

X = X + 1; X = X + 1;

What is the final value(s) of X?

Expected: X = 2.

Reality: X ∈ {1, 2}

9



Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,
Is it correct?
Is it a bug?
What are common concurrency bugs?
Will it happen in all execution?
Will it happen in at least one execution?

After finding a bug:
How to fix it?
Is it the best way to fix it?
Is it affecting performance?

10



Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,
Is it correct?
Is it a bug?
What are common concurrency bugs?
Will it happen in all execution?
Will it happen in at least one execution?

After finding a bug:
How to fix it?
Is it the best way to fix it?
Is it affecting performance?

10



Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,

Is it correct?
Is it a bug?
What are common concurrency bugs?
Will it happen in all execution?
Will it happen in at least one execution?

After finding a bug:
How to fix it?
Is it the best way to fix it?
Is it affecting performance?

10



Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,
Is it correct?
Is it a bug?
What are common concurrency bugs?
Will it happen in all execution?
Will it happen in at least one execution?

After finding a bug:
How to fix it?
Is it the best way to fix it?
Is it affecting performance?

10



Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,
Is it correct?
Is it a bug?
What are common concurrency bugs?
Will it happen in all execution?
Will it happen in at least one execution?

After finding a bug:
How to fix it?
Is it the best way to fix it?
Is it affecting performance?

10



Going Back to the Example

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 1
b = b + 1;
X = b; // 2

3

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 0
b = b + 1;
X = b; // 1

7

Solution: use lock/unlock primitives.

X = 0;

lock(m)
a = X ;
a = a+ 1;
X = a;
unlock(m)

lock(m)
b = X ;
b = b + 1;
X = b;
unlock(m)

11



Going Back to the Example

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 1
b = b + 1;
X = b; // 2

3

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 0
b = b + 1;
X = b; // 1

7

Solution: use lock/unlock primitives.

X = 0;

lock(m)
a = X ;
a = a+ 1;
X = a;
unlock(m)

lock(m)
b = X ;
b = b + 1;
X = b;
unlock(m)

11



Solution: Tradeoff

Init

lock(m)
S1;
unlock(m)

lock(m)
S2;
unlock(m)

⇓

Init;S1;S2; or Init;S2;S1;

lock/unlock

- Reduces concurrency

Goal: minimal lock/unlock for correct programming

12



Solution: Tradeoff

Init

lock(m)
S1;
unlock(m)

lock(m)
S2;
unlock(m)

⇓

Init;S1;S2; or Init;S2;S1;

lock/unlock

- Reduces concurrency

Goal: minimal lock/unlock for correct programming
12



Lock Based Concurrency

Locking mechanism.
Primitive: mutex
Properties: mutual exclusion

Errors
Datarace
Atomicity violation

Pitfalls
Deadlock
Livelock
Non-termination

Lock free programming
Non-blocking concurrency

13



Analysis

Concurrency analysis for multithreaded programs
Race detection
Atomicity violation detection

Analysis techniques
Static and dynamic analysis
Model checking
testing

14



Weak Memory Concurrency

Sequential consistency (SC)

Weak memory (Non-SC) models
TSO
PSO
RMO
RA
. . .

Analysis of weak memory programs

15



Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16



Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16



Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16



Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16



Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16



Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16



Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16


