Analysis of Concurrent and Distributed Programs J

Burcu Kulahcioglu Ozkan and Soham Chakraborty

09.02.2022

Outline

(1) Introduction
o Course logistics & assessment (Link)
@ Lecture content (Link)

e Course projects (Link)

Overview of concurrency
e Paradigms

e Concepts

Interactions

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=60097
https://cs4405.github.io
https://cs4405.github.io

Concurrent Programming: Paradigms

Multiple computations that may/may not influences one another

e Parallelism (SIMD, MIMD, ...)

o Independent computation on multiple threads/processes on
independent data

@ Distributed computing

o Independent computation on multiple machines with message
passing

@ Asynchronous programmming

o Multiple tasks on single/multiple threads that may share
memory
o Event driven systems

@ Shared memory concurrency
o Multiple threads that communicate by shared memory

Concurrent Programming: Motivation

Pros

+ Concurrency improves performance
Cons

- Concurrent programming is hard

- May result in tricky bugs in programs

Requires careful analysis

Concurrent Programming: Motivation

Pros

+ Concurrency improves performance

Cons
- Concurrent programming is hard

- May result in tricky bugs in programs

Requires careful analysis

This course !

X =0;:
X=X+1 | X=X+1

What is the final value(s) of X?

X =0;:
X=X+1 | X=X+1

What is the final value(s) of X?

o Expected: X = 2.

b=X;

b=b+1,;
bl

X

a,

X;

a=a+1;

X

a

Example

X =0;:
a=X; //0 || b=X,
a=a+1; b=b+1,

X =a X =b;

X =0;:
a=X; //0 || b=X,
a=a+1; b=b+1,

X=a //1]| X=b;

X =0;:
a=X; //0 || b=X; //1
a=a+1, b=b+1;

X=a //1]| X=b;

X =0;:
a=X; //0 || b=X; //1
a=a+1, b=b+1;

X=a [/1] X=b;, /]2

X =0;:
a=X;, //0 | b=X; //O
a=a+1, b=>b+1;
X =a X =b;

X =0;:
a=X, //0 | b=X; //O
a=a+1; b=b+1;

X=a /[//1| X=b; //1

X =0;:
X=X+1 | X=X+1

What is the final value(s) of X?

X =0;:
X=X+1 | X=X+1

What is the final value(s) of X?
o Expected: X = 2.
o Reality: X € {1,2}

10

What are the semantics of these primitives?

10

Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,

10

Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,

Is it correct?

Is it a bug?

What are common concurrency bugs?
Will it happen in all execution?

Will it happen in at least one execution?

10

Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,
@ Is it correct?

Is it a bug?

What are common concurrency bugs?

Will it happen in all execution?

Will it happen in at least one execution?

After finding a bug:
e How to fix it?
@ Is it the best way to fix it?

o Is it affecting performance?

10

Going Back to the Example

X =0;
a=X; //0 || b=X; //1
a=a+1, b=b+1,
X=a /[//1] X=b;, /]2

v

X =0;
a=X;, //0 | b=X; //O
a=a+1; b=b+1;
X=a [/1] X=0b, /]1
X

11

Going Back to the Example

X=0; X =0;
a=X; //0 || b=X; //1 a=X;, //0 | b=X; //O
a=a+1, b=b+1, a=a+1, b=b+1;
X=a /[//1] X=b;, /]2 X=a [/1] X=0b, /]1
v X
Solution: use lock/unlock primitives.
X =0;
lock(m) lock(m)
a=X; b=X;
a=a+1; b=b+1;
X = a; X = b;
unlock(m) || unlock(m)

11

Solution: Tradeoff

Init; S1; So;

lock / unlock

Init

lock(m)
S1;
unlock(m)

or

- Reduces concurrency

lock(m)
52
unlock(m)

Init; Sy; Sq;

12

Solution: Tradeoff

Init

lock(m) lock(m)
S1; 52
unlock(m) || unlock(m)

Init; 51; So: or Init; 5o; Sq;

lock / unlock
- Reduces concurrency

Goal: minimal lock/unlock for correct programming

12

Lock Based Concurrency

Locking mechanism.
@ Primitive: mutex

@ Properties: mutual exclusion

Errors
@ Datarace

@ Atomicity violation

Pitfalls
@ Deadlock
@ Livelock

@ Non-termination

Lock free programming

@ Non-blocking concurrency

13

Analysis

Concurrency analysis for multithreaded programs
@ Race detection

@ Atomicity violation detection

Analysis techniques
@ Static and dynamic analysis
@ Model checking

@ testing

14

Weak Memory Concurrency

Sequential consistency (SC)

Weak memory (Non-SC) models
e TSO
e PSO

RMO

RA

Analysis of weak memory programs

15

Distributed Programming

- Many flavors of concurrency
o Single-threaded/multi-threaded asynchronous
@ Event driven
@ Distributed

16

Distributed Programming

- Many flavors of concurrency
o Single-threaded/multi-threaded asynchronous
@ Event driven
@ Distributed

- Single-threaded /multi-threaded asynchronous, event driven,
distributed concurrency

16

Distributed Programming

- Many flavors of concurrency
o Single-threaded/multi-threaded asynchronous
@ Event driven
@ Distributed

- Single-threaded /multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

16

Distributed Programming

- Many flavors of concurrency
o Single-threaded/multi-threaded asynchronous
@ Event driven
@ Distributed

- Single-threaded /multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

16

Distributed Programming

- Many flavors of concurrency
o Single-threaded/multi-threaded asynchronous
@ Event driven
@ Distributed

- Single-threaded /multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency
- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

16

Distributed Programming

- Many flavors of concurrency
o Single-threaded/multi-threaded asynchronous
@ Event driven
@ Distributed

- Single-threaded /multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency
- Concurrency analysis for distributed programs
- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

16

Distributed Programming

- Many flavors of concurrency
o Single-threaded/multi-threaded asynchronous
@ Event driven
@ Distributed

- Single-threaded /multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency
- Concurrency analysis for distributed programs
- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems

16

