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Concurrent Programming: Paradigms

Multiple computations that may/may not influences one another

Parallelism (SIMD, MIMD, . . .)
Independent computation on multiple threads/processes on
independent data

Distributed computing
Independent computation on multiple machines with message
passing

Asynchronous programmming
Multiple tasks on single/multiple threads that may share
memory
Event driven systems

Shared memory concurrency
Multiple threads that communicate by shared memory
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Concurrent Programming: Motivation

Pros

+ Concurrency improves performance

Cons

- Concurrent programming is hard

- May result in tricky bugs in programs

Requires careful analysis

This course !
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Example

X = 0;

X = X + 1; X = X + 1;

What is the final value(s) of X?

Expected: X = 2.
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Example

X = 0;

a = X ;
a = a+ 1;
X = a;

b = X ;
b = b + 1;
X = b;
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Example: Execution (1)

X = 0;

a = X ; // 0
a = a+ 1;
X = a;

// 1

b = X ;

// 1

b = b + 1;
X = b;

// 2
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Example: Execution (2)

X = 0;

a = X ; // 0
a = a+ 1;
X = a;

// 1

b = X ; // 0
b = b + 1;
X = b;

// 1
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Example: Execution (2)

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 0
b = b + 1;
X = b; // 1
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Example

X = 0;

X = X + 1; X = X + 1;

What is the final value(s) of X?

Expected: X = 2.

Reality: X ∈ {1, 2}

9



Example

X = 0;

X = X + 1; X = X + 1;

What is the final value(s) of X?

Expected: X = 2.

Reality: X ∈ {1, 2}

9



Analysis Questions

What are the semantics of these primitives?

Given a concurrent program and an outcome,
Is it correct?
Is it a bug?
What are common concurrency bugs?
Will it happen in all execution?
Will it happen in at least one execution?

After finding a bug:
How to fix it?
Is it the best way to fix it?
Is it affecting performance?
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Going Back to the Example

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 1
b = b + 1;
X = b; // 2

3

X = 0;

a = X ; // 0
a = a+ 1;
X = a; // 1

b = X ; // 0
b = b + 1;
X = b; // 1
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Solution: use lock/unlock primitives.

X = 0;

lock(m)
a = X ;
a = a+ 1;
X = a;
unlock(m)

lock(m)
b = X ;
b = b + 1;
X = b;
unlock(m)
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Solution: Tradeoff

Init

lock(m)
S1;
unlock(m)

lock(m)
S2;
unlock(m)

⇓

Init;S1;S2; or Init;S2;S1;

lock/unlock

- Reduces concurrency

Goal: minimal lock/unlock for correct programming
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Lock Based Concurrency

Locking mechanism.
Primitive: mutex
Properties: mutual exclusion

Errors
Datarace
Atomicity violation

Pitfalls
Deadlock
Livelock
Non-termination

Lock free programming
Non-blocking concurrency
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Analysis

Concurrency analysis for multithreaded programs
Race detection
Atomicity violation detection

Analysis techniques
Static and dynamic analysis
Model checking
testing
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Weak Memory Concurrency

Sequential consistency (SC)

Weak memory (Non-SC) models
TSO
PSO
RMO
RA
. . .

Analysis of weak memory programs
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Distributed Programming

- Many flavors of concurrency
Single-threaded/multi-threaded asynchronous
Event driven
Distributed

- Single-threaded/multi-threaded asynchronous, event driven,
distributed concurrency

- More on distributed concurrency

- Concurrency analysis for distributed programs

- Replicated systems: Linearizability & CAP Theorem

- Replicated systems: Strong vs weak consistency in distributed
systems

- Replicated systems: Strong vs weak isolation in distributed
systems
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