Data Race Detection in C/C++ Concurrent Programs

(CS4405 - Analysis of Concurrent and Distributed Programs

February, 2022

Project description

In this project, you will detect data races in the executions of C11 concurrent programs. EI

Background Information
C11 concurrency

C/CH+ defines relaxed memory concurrency model which is known as C11 concurrency model [I]. C11
has various kinds of accesses that affect shared memory concurrency. To begin with, it provides plain
or non-atomic load and store accesses. In addition, C11 also has atomic accesses of four kinds: load,
store, atomic update (RMW) such as compare-and-swap and atomic increment, and memory fence.
Each atomic access is attached with a memory order from: relaxed, acquire, release, acquire-release,
sequentially-consistent.

Data race

An execution has a data race if there are concurrent memory accesses on same memory locations and
at least one of them is a write access. Given a data race if both memory accesses are writes then it is a
write-write race. If it is between read and write accesses then we say it is a read-write race. Moreover,
we may categorize data race as

1. Non-atomic-race: where at least one access is non-atomic access.
2. Relaxed-race: where at least one access is a relaxed access.

3. RA-race: where at least one access is non-SC access.

Execution

An execution consists of a set of events resulting from shared memory accesses or fences, and relations
between these events. Further details are in [I1 2, [3].

clltester

Given a C11 program the clltester tool [2 [3] may execute the program and generate execution traces
with events and relations as discussed above. Currently clltester identify data races on non-atomic
accesses. In this project you will generate the traces and identify the other types of data races.

Note: feel free to use any other tool if you like.

Roadmap for the project:
The project involves the following steps:
e Set up the clltester tool.

e Write C11 test programs.

1The project description is subject to small changes and updates. Please contact the TA’s and the teachers if you have
any questions.



Generate execution traces from C11 programs (and write it in a file).

Develop the algorithms for data race detection on the generated trace.

Implement the algorithm to check if an execution contains a data race. The implementation can
be independent of clltester tool.

Evaluate on the clltester benchmarks*.

Note:

e You may use clltester inside the vagrant box to generate the traces, if you face difficulty in installing
it from source code.

e The evaluation on the ‘cdschecker-benchmarks’ suffice. You may generate larger trace by changing
the input.

e Some applications (e.g. firfox) require significantly more computation and memory. You may skip
these.

References

[1] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++
concurrency. In POPL’11, pages 55-66. ACM, 2011.

[2] Weiyu Luo and Brian Demsky. C11Tester: A Race Detector for C/C++ Atomics, page 630-646.
2021.

[3] Weiyu Luo and Brian Demsky. Clltester artifact.



